Featured Research

from universities, journals, and other organizations

Study Links Selection For Pathogen-resistance With Increased Risk For Inflammatory Disease

Date:
August 7, 2009
Source:
Cell Press
Summary:
New research reveals that a simple laboratory assay detects a genetic variation in host response to bacterial infection that is associated with an increased susceptibility for inflammatory disease. The study also provides fascinating insight into the link between evolution and the ability to ward off pathogens.

New research reveals that a simple laboratory assay detects a genetic variation in host response to bacterial infection that is associated with an increased susceptibility for inflammatory disease. The study, published by Cell Press online on August 6th in the American Journal of Human Genetics, also provides fascinating insight into the link between evolution and the ability to ward off pathogens.

"While previous genome-wide association studies and scans for selection have identified genes important for human disease, there is a growing need for approaches that provide mechanistic information for how variants impact disease pathogenesis and to identify genetic variation in traits subject to natural selection," explains senior study author Dr. Samuel Miller from the University of Washington in Seattle.

Dr. Miller and colleagues used a novel screen of bacterial infection to identify human variation in Salmonella-induced cell death. "By examining variation in human cell-based measures of infectious disease susceptibility and severity, we can begin to link variation affecting human disease and variation identified as being the subject of natural selection," explains lead author Dr. Dennis Ko.

The researchers observed that a more robust host response to Salmonella was associated with nonfunctional CARD8, a gene thought to be a key negative regulator of inflammation. A comparison of CARD8 genes among different mammalian populations suggested that the increase in infectious disease burden associated with animals that live in herds or colonies may have naturally selected for loss of CARD8 multiple times in mammalian evolution.

A similar process may have occurred in humans, as the authors also showed that loss of function of CARD8 is more common among populations that adopted agriculture earlier, while it is less common in populations that have traditionally lived as hunter-gatherers. The researchers hypothesized that loss of CARD8 may be one way in which a population evolves a more robust host response to deal with infectious diseases.

However, the better ability to ward off infections may be associated with an increased risk for developing inflammatory diseases. Other researchers had already shown a link between CARD8 and severity of rheumatoid arthritis and Dr. Miller and colleagues found in a small clinical study that loss of CARD8 was associated with a modestly increased risk of systemic inflammatory response syndrome, a physiologic state of hyper-inflammation that can have many different causes.

"These results demonstrate the utility of genome-wide cell-based association screens using microbes in identifying naturally selected variants that can impact human health," explains Dr. Miller. "Further, our work provides proof-of-principle that screens for genetic variation associated with infection in humans could be developed to serve as functional tests of susceptibility and outcomes for acute and chronic inflammatory disease."

The researchers include Dennis C. Ko, University of Washington, Seattle, WA; Kajal P. Shukla, University of Washington, Seattle, WA; Christine Fong, University of Washington, Seattle, WA, Michael Wasnick, University of Washington, Seattle, WA; Mitchell J. Brittnacher, University of Washington, Seattle, WA; Mark M. Wurfel, University of Washington, Seattle, WA, Tarah D. Holden, University of Washington, Seattle, WA; Grant E. O'Keefe, University of Washington, Seattle, WA; Brian Van Yserloo, University of Washington, Seattle, WA; Joshua M. Akey, University of Washington, Seattle, WA; Samuel I. Miller, University of Washington, Seattle, WA, University of Washington, Seattle, WA.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Study Links Selection For Pathogen-resistance With Increased Risk For Inflammatory Disease." ScienceDaily. ScienceDaily, 7 August 2009. <www.sciencedaily.com/releases/2009/08/090806121708.htm>.
Cell Press. (2009, August 7). Study Links Selection For Pathogen-resistance With Increased Risk For Inflammatory Disease. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2009/08/090806121708.htm
Cell Press. "Study Links Selection For Pathogen-resistance With Increased Risk For Inflammatory Disease." ScienceDaily. www.sciencedaily.com/releases/2009/08/090806121708.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins