Featured Research

from universities, journals, and other organizations

Strong Effect Of The Weak Interaction: Exploring The Standard Model Of Physics Without The High-energy Collider

Date:
August 13, 2009
Source:
American Physical Society
Summary:
Scientists have measured the largest effect of the "weak interaction" -- one of the four fundamental forces of nature -- ever observed in an atom.

Scientists have measured the largest effect of the "weak interaction" -- one of the four fundamental forces of nature -- ever observed in an atom.
Credit: Image copyright American Physical Society [Illustration: Carin Cain]

Scientists at the University of California, Berkeley, and Lawrence Berkeley National Laboratory in the US, have performed sophisticated laser measurements to detect the subtle effects of one of nature's most elusive forces - the "weak interaction". Their work, which reveals the largest effect of the weak interaction ever observed in an atom, is reported in Physical Review Letters and highlighted in the August 10th issue of APS's on-line journal Physics (physics.aps.org).

Related Articles


Along with gravity, electromagnetism and the strong interaction that holds protons and neutrons together in the nucleus, the weak interaction is one of the four known fundamental forces. It is the force that allows the radioactive decay of a neutron into a proton - the basis of carbon dating – to occur. However, because it acts over such a short range – about a tenth of a percent the diameter of the proton – it is almost impossible to study its effect without large, high-energy particle accelerators.

Theorists had predicted that the weak interaction between an atom's electrons and its nucleus could be quite large in Ytterbium (element 70 in the periodic table). To actually see this interaction, though, Dmitry Budker and his group at UC Berkeley had to carefully perform delicate measurements based on fundamental quantum mechanical effects and systematically eliminate other spurious signals.

The effect Budker and his colleagues see in Ytterbium is about 100 times bigger than what has been seen in Cesium, the atom in which most experiments in this field have been performed so far. The finding of such a large effect in Ytterbium poses an exciting opportunity to use tabletop atomic physics techniques as part of sensitive searches for new physics that complement ongoing efforts at the world's high-energy colliders.


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society. "Strong Effect Of The Weak Interaction: Exploring The Standard Model Of Physics Without The High-energy Collider." ScienceDaily. ScienceDaily, 13 August 2009. <www.sciencedaily.com/releases/2009/08/090810122137.htm>.
American Physical Society. (2009, August 13). Strong Effect Of The Weak Interaction: Exploring The Standard Model Of Physics Without The High-energy Collider. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2009/08/090810122137.htm
American Physical Society. "Strong Effect Of The Weak Interaction: Exploring The Standard Model Of Physics Without The High-energy Collider." ScienceDaily. www.sciencedaily.com/releases/2009/08/090810122137.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Buzz60 (Dec. 17, 2014) Jaguar unveils a virtual 360 degree windshield that may be the most futuristic automotive development yet. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins