Featured Research

from universities, journals, and other organizations

Strong Effect Of The Weak Interaction: Exploring The Standard Model Of Physics Without The High-energy Collider

Date:
August 13, 2009
Source:
American Physical Society
Summary:
Scientists have measured the largest effect of the "weak interaction" -- one of the four fundamental forces of nature -- ever observed in an atom.

Scientists have measured the largest effect of the "weak interaction" -- one of the four fundamental forces of nature -- ever observed in an atom.
Credit: Image copyright American Physical Society [Illustration: Carin Cain]

Scientists at the University of California, Berkeley, and Lawrence Berkeley National Laboratory in the US, have performed sophisticated laser measurements to detect the subtle effects of one of nature's most elusive forces - the "weak interaction". Their work, which reveals the largest effect of the weak interaction ever observed in an atom, is reported in Physical Review Letters and highlighted in the August 10th issue of APS's on-line journal Physics (physics.aps.org).

Related Articles


Along with gravity, electromagnetism and the strong interaction that holds protons and neutrons together in the nucleus, the weak interaction is one of the four known fundamental forces. It is the force that allows the radioactive decay of a neutron into a proton - the basis of carbon dating – to occur. However, because it acts over such a short range – about a tenth of a percent the diameter of the proton – it is almost impossible to study its effect without large, high-energy particle accelerators.

Theorists had predicted that the weak interaction between an atom's electrons and its nucleus could be quite large in Ytterbium (element 70 in the periodic table). To actually see this interaction, though, Dmitry Budker and his group at UC Berkeley had to carefully perform delicate measurements based on fundamental quantum mechanical effects and systematically eliminate other spurious signals.

The effect Budker and his colleagues see in Ytterbium is about 100 times bigger than what has been seen in Cesium, the atom in which most experiments in this field have been performed so far. The finding of such a large effect in Ytterbium poses an exciting opportunity to use tabletop atomic physics techniques as part of sensitive searches for new physics that complement ongoing efforts at the world's high-energy colliders.


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society. "Strong Effect Of The Weak Interaction: Exploring The Standard Model Of Physics Without The High-energy Collider." ScienceDaily. ScienceDaily, 13 August 2009. <www.sciencedaily.com/releases/2009/08/090810122137.htm>.
American Physical Society. (2009, August 13). Strong Effect Of The Weak Interaction: Exploring The Standard Model Of Physics Without The High-energy Collider. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2009/08/090810122137.htm
American Physical Society. "Strong Effect Of The Weak Interaction: Exploring The Standard Model Of Physics Without The High-energy Collider." ScienceDaily. www.sciencedaily.com/releases/2009/08/090810122137.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Reuters - Innovations Video Online (Jan. 30, 2015) — A nanosensor that mimics the oral effects and sensations of drinking wine has been developed by Danish and Portuguese researchers. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) — If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) — Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Senate Passes Bill for Keystone XL Pipeline

Senate Passes Bill for Keystone XL Pipeline

AP (Jan. 29, 2015) — The Republican-controlled Senate has passed a bipartisan bill approving construction of the Keystone XL oil pipeline. (Jan. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins