Featured Research

from universities, journals, and other organizations

Strong Effect Of The Weak Interaction: Exploring The Standard Model Of Physics Without The High-energy Collider

Date:
August 13, 2009
Source:
American Physical Society
Summary:
Scientists have measured the largest effect of the "weak interaction" -- one of the four fundamental forces of nature -- ever observed in an atom.

Scientists have measured the largest effect of the "weak interaction" -- one of the four fundamental forces of nature -- ever observed in an atom.
Credit: Image copyright American Physical Society [Illustration: Carin Cain]

Scientists at the University of California, Berkeley, and Lawrence Berkeley National Laboratory in the US, have performed sophisticated laser measurements to detect the subtle effects of one of nature's most elusive forces - the "weak interaction". Their work, which reveals the largest effect of the weak interaction ever observed in an atom, is reported in Physical Review Letters and highlighted in the August 10th issue of APS's on-line journal Physics (physics.aps.org).

Along with gravity, electromagnetism and the strong interaction that holds protons and neutrons together in the nucleus, the weak interaction is one of the four known fundamental forces. It is the force that allows the radioactive decay of a neutron into a proton - the basis of carbon dating – to occur. However, because it acts over such a short range – about a tenth of a percent the diameter of the proton – it is almost impossible to study its effect without large, high-energy particle accelerators.

Theorists had predicted that the weak interaction between an atom's electrons and its nucleus could be quite large in Ytterbium (element 70 in the periodic table). To actually see this interaction, though, Dmitry Budker and his group at UC Berkeley had to carefully perform delicate measurements based on fundamental quantum mechanical effects and systematically eliminate other spurious signals.

The effect Budker and his colleagues see in Ytterbium is about 100 times bigger than what has been seen in Cesium, the atom in which most experiments in this field have been performed so far. The finding of such a large effect in Ytterbium poses an exciting opportunity to use tabletop atomic physics techniques as part of sensitive searches for new physics that complement ongoing efforts at the world's high-energy colliders.


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society. "Strong Effect Of The Weak Interaction: Exploring The Standard Model Of Physics Without The High-energy Collider." ScienceDaily. ScienceDaily, 13 August 2009. <www.sciencedaily.com/releases/2009/08/090810122137.htm>.
American Physical Society. (2009, August 13). Strong Effect Of The Weak Interaction: Exploring The Standard Model Of Physics Without The High-energy Collider. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2009/08/090810122137.htm
American Physical Society. "Strong Effect Of The Weak Interaction: Exploring The Standard Model Of Physics Without The High-energy Collider." ScienceDaily. www.sciencedaily.com/releases/2009/08/090810122137.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins