Featured Research

from universities, journals, and other organizations

Novel Temperature Calibration Improves Microhotplate Technology

Date:
August 25, 2009
Source:
National Institute of Standards and Technology (NIST)
Summary:
Researchers have developed a new calibration technique that will improve the reliability and stability of the microhotplate -- a novel device being developed as the foundation for miniature yet highly accurate gas sensors that can detect chemical and biological agents, industrial leaks and even signs of extraterrestrial life from aboard a planetary probe.

The NIST microhotplate uses its thermal efficiency in conjunction with a thermocouple to form a self-test temperature sensing system. Four microhotplates (left image) are seen with a strip of rhodium film (marked by an arrow) crossing the bottom right microhotplate. This strip makes contact with the platinum in the microhotplate structure (seen in the closeup image on the right) to form a stable thermocouple for measuring temperature.
Credit: M. Afridi, NIST

Researchers at the National Institute of Standards and Technology (NIST) have developed a new calibration technique that will improve the reliability and stability of one of NIST's most versatile technologies, the microhotplate. The novel NIST device is being developed as the foundation for miniature yet highly accurate gas sensors that can detect chemical and biological agents, industrial leaks and even signs of extraterrestrial life from aboard a planetary probe.

The tiny microhotplates—no wider than a human hair—are programmed to cycle through a range of temperatures. They can be coated with metal oxide films tailored to detect specific gas species. Airborne chemicals attach to the surface of the detector depending on the type of film and the temperature of the surface, changing the flow of electricity through the device, which serves as the "signature" for identifying both the type and concentration of the gas in the ambient air.

Accurate microhotplate temperature measurements are crucial for the discrimination and quantification of gas species, while reliable, long-term operation demands that the microhotplate's temperature sensors be either highly stable or able to sense when they've drifted, a functionality known as a "built-in self test" (BIST). As demonstrated for the first time in a paper in an upcoming issue of IEEE Electron Device Letters, the new calibration method satisfies both requirements.

A portion of the polysilicon heater making up the microhotplate originally served as the device's temperature sensor. However, this sensor would slowly drift over time from its initial calibration. Within three months, the temperature readings were off by as much as 25 degrees Celsius at high temperatures.

The NIST engineers overcame this shortcoming by using data from two additional temperature sensors—a highly stable, thin-film platinum/rhodium thermocouple integrated in the microhotplate structure for one sensor and the thermal efficiency of the structure itself for the other. Comparing the temperatures reported by these two sensors provides the microhotplate with its internal monitoring system. As long as the absolute value of the difference between the reported temperatures remains below a specified threshold value, the average of the two readings is considered reliable. Should the difference exceed the threshold, the system reports an error.

The original polysilicon sensor still provides the microhotplate's initial temperature measurement, which is used to calibrate the other two sensors. With the complete "check and balance" system in place, temperature measurements are accurate to within 1.5 degrees Celsius.

Having successfully demonstrated the new temperature calibration system for their microhotplate, the NIST researchers are working on additional advancements for the technology. Next in line is the development of a built-in system for sensing contamination of the metal oxide films critical to the microhotplate's use in gas detection.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Afridi, C. Montgomery, E. Cooper-Balis, S. Semancik, K.G. Kreider and J. Geist. Analog BIST functionality for microhotplate temperature sensors. IEEE Electron Devices, Volume 30, No. 9 (September 2009)

Cite This Page:

National Institute of Standards and Technology (NIST). "Novel Temperature Calibration Improves Microhotplate Technology." ScienceDaily. ScienceDaily, 25 August 2009. <www.sciencedaily.com/releases/2009/08/090811191656.htm>.
National Institute of Standards and Technology (NIST). (2009, August 25). Novel Temperature Calibration Improves Microhotplate Technology. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2009/08/090811191656.htm
National Institute of Standards and Technology (NIST). "Novel Temperature Calibration Improves Microhotplate Technology." ScienceDaily. www.sciencedaily.com/releases/2009/08/090811191656.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins