Featured Research

from universities, journals, and other organizations

Novel Temperature Calibration Improves Microhotplate Technology

Date:
August 25, 2009
Source:
National Institute of Standards and Technology (NIST)
Summary:
Researchers have developed a new calibration technique that will improve the reliability and stability of the microhotplate -- a novel device being developed as the foundation for miniature yet highly accurate gas sensors that can detect chemical and biological agents, industrial leaks and even signs of extraterrestrial life from aboard a planetary probe.

The NIST microhotplate uses its thermal efficiency in conjunction with a thermocouple to form a self-test temperature sensing system. Four microhotplates (left image) are seen with a strip of rhodium film (marked by an arrow) crossing the bottom right microhotplate. This strip makes contact with the platinum in the microhotplate structure (seen in the closeup image on the right) to form a stable thermocouple for measuring temperature.
Credit: M. Afridi, NIST

Researchers at the National Institute of Standards and Technology (NIST) have developed a new calibration technique that will improve the reliability and stability of one of NIST's most versatile technologies, the microhotplate. The novel NIST device is being developed as the foundation for miniature yet highly accurate gas sensors that can detect chemical and biological agents, industrial leaks and even signs of extraterrestrial life from aboard a planetary probe.

Related Articles


The tiny microhotplates—no wider than a human hair—are programmed to cycle through a range of temperatures. They can be coated with metal oxide films tailored to detect specific gas species. Airborne chemicals attach to the surface of the detector depending on the type of film and the temperature of the surface, changing the flow of electricity through the device, which serves as the "signature" for identifying both the type and concentration of the gas in the ambient air.

Accurate microhotplate temperature measurements are crucial for the discrimination and quantification of gas species, while reliable, long-term operation demands that the microhotplate's temperature sensors be either highly stable or able to sense when they've drifted, a functionality known as a "built-in self test" (BIST). As demonstrated for the first time in a paper in an upcoming issue of IEEE Electron Device Letters, the new calibration method satisfies both requirements.

A portion of the polysilicon heater making up the microhotplate originally served as the device's temperature sensor. However, this sensor would slowly drift over time from its initial calibration. Within three months, the temperature readings were off by as much as 25 degrees Celsius at high temperatures.

The NIST engineers overcame this shortcoming by using data from two additional temperature sensors—a highly stable, thin-film platinum/rhodium thermocouple integrated in the microhotplate structure for one sensor and the thermal efficiency of the structure itself for the other. Comparing the temperatures reported by these two sensors provides the microhotplate with its internal monitoring system. As long as the absolute value of the difference between the reported temperatures remains below a specified threshold value, the average of the two readings is considered reliable. Should the difference exceed the threshold, the system reports an error.

The original polysilicon sensor still provides the microhotplate's initial temperature measurement, which is used to calibrate the other two sensors. With the complete "check and balance" system in place, temperature measurements are accurate to within 1.5 degrees Celsius.

Having successfully demonstrated the new temperature calibration system for their microhotplate, the NIST researchers are working on additional advancements for the technology. Next in line is the development of a built-in system for sensing contamination of the metal oxide films critical to the microhotplate's use in gas detection.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Afridi, C. Montgomery, E. Cooper-Balis, S. Semancik, K.G. Kreider and J. Geist. Analog BIST functionality for microhotplate temperature sensors. IEEE Electron Devices, Volume 30, No. 9 (September 2009)

Cite This Page:

National Institute of Standards and Technology (NIST). "Novel Temperature Calibration Improves Microhotplate Technology." ScienceDaily. ScienceDaily, 25 August 2009. <www.sciencedaily.com/releases/2009/08/090811191656.htm>.
National Institute of Standards and Technology (NIST). (2009, August 25). Novel Temperature Calibration Improves Microhotplate Technology. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2009/08/090811191656.htm
National Institute of Standards and Technology (NIST). "Novel Temperature Calibration Improves Microhotplate Technology." ScienceDaily. www.sciencedaily.com/releases/2009/08/090811191656.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cablevision Enters Wi-Fi Phone Fray

Cablevision Enters Wi-Fi Phone Fray

Reuters - Business Video Online (Jan. 26, 2015) The entry by Cablevision and Google could intensify the already heated price wars for mobile phone service. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Hector the Robot Mimics a Giant Stick Insect

Hector the Robot Mimics a Giant Stick Insect

Reuters - Innovations Video Online (Jan. 26, 2015) A robot based on a stick insect can navigate difficult terrain autonomously and adapt to its surroundings. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Obama's Wildlife Plan Renews Alaska Drilling Debate

Obama's Wildlife Plan Renews Alaska Drilling Debate

Newsy (Jan. 26, 2015) President Obama&apos;s proposal aims to protect more land in the Arctic National Wildlife Refuge, but so far, all that&apos;s materialized is a war of words. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

    Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins