Featured Research

from universities, journals, and other organizations

Bio-Nanomachines: Proteins As Resistance Fighters

Date:
August 18, 2009
Source:
Max-Planck-Gesellschaft
Summary:
Friction limits the speed and efficiency of macroscopic engines. Is this also true for nanomachines? Researchers recently used laser tweezers to measure the friction between a single motor protein molecule and its track. The team found that also within our cells, motors work against the resistance of friction and are restrained in its operation—usually by far not as much though as their macroscopic counterparts.

Fluorescent image of single motor proteins (left): Motion of two diffusing kinesin molecules (green) on a microtubule (red) shown as a time series kymograph. Schematic (right): By dragging diffusing kinesin molecules with laser tweezers over a microtubule, the friction force between the motor and its microtubule track can be measured very precisely.
Credit: MPI-CBG, BIOTEC

Friction limits the speed and efficiency of macroscopic engines. Is this also true for nanomachines? A Dresden research team used laser tweezers to measure the friction between a single motor protein molecule and its track. The team found that also within our cells, motors work against the resistance of friction and are restrained in its operation—usually by far not as much though as their macroscopic counterparts.

These first experimental measurements of protein friction could help researchers to better understand key cellular processes such as cell division which is driven by such molecular machines. (Science, August 14, 2009)

Friction is the force that resists the relative motion of two bodies in contact. The same is true on the nanoscale: Molecular motors have to fight the friction created between them and their tracks. However, since the frictional forces acting on such motors had not been measured before, it was not known how they depend on the speed and the direction of motion.

Friction Slows Down Proteins

Scientists in Dresden at the Biotechnology Center (BIO-TEC) of the Technical University of Dresden and at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) immobilized the molecular motor kinesin on a microsphere which was held by laser tweezers and dragged over its track, a so-called microtubule. In this manner, the friction force between the motor and its microtubule track was measured very precisely. "Just like for macroscopic machines, protein friction limits the speed and efficiency of the small bio-motors", says Erik Schäffer, group leader at the BIOTEC and Jonathon Howard, director and group leader at the MPI-CBG.

The researchers explain that the protein, in the absence of an energy source, takes eight nanometer (a millionth of a millimeter) wide "diffusive hops", corresponding to the length of the tubulin subunits that make up a microtubule. The motors step from one tubulin subunit to the adjacent one by forming a new bond with the microtubule filament as another bond is broken. When pulled by the tweezers, the energy released from these breaking bonds is lost as friction.

Efficient nanomachines

Protein friction also gives insight into the efficiency of kinesin. "About half of the energy from the motor’s fuel ATP is dissipated as friction between the motor and its substrate" Howard comments. Schäffer adds: "What remains after further dissipation inside the motor is used for mechanical work—the efficiency is usually much better than for man-made machines". The dissipated energy is eventually converted to heat, that contributes to the heating of our body. Thus, for example our muscles are partly heated by protein friction as the muscle motor proteins do their work.



Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. Volker Bormuth, Vladimir Varga, Jonathon Howard, Erik Schäffer. Protein Friction Limits Diffusive and Directed Movements of Kinesin Motors on Microtubules. Science, 2009; 325 (5942): 870 DOI: 10.1126/science.1174923

Cite This Page:

Max-Planck-Gesellschaft. "Bio-Nanomachines: Proteins As Resistance Fighters." ScienceDaily. ScienceDaily, 18 August 2009. <www.sciencedaily.com/releases/2009/08/090814100101.htm>.
Max-Planck-Gesellschaft. (2009, August 18). Bio-Nanomachines: Proteins As Resistance Fighters. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2009/08/090814100101.htm
Max-Planck-Gesellschaft. "Bio-Nanomachines: Proteins As Resistance Fighters." ScienceDaily. www.sciencedaily.com/releases/2009/08/090814100101.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) — 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins