Featured Research

from universities, journals, and other organizations

Study Supports DNA Repair-blocker Research In Cancer Therapy

Date:
August 20, 2009
Source:
Dana-Farber Cancer Institute
Summary:
Scientists have uncovered the mechanism behind a promising new approach to cancer treatment: damaging cancer cells' DNA with potent drugs while simultaneously preventing the cells from repairing themselves. The findings help explain the promising results being seen in clinical trials of compounds that force cancer cells with genetic damage to self-destruct instead of "resting" while their DNA undergoes repairs.

Scientists at Dana-Farber Cancer Institute have uncovered the mechanism behind a promising new approach to cancer treatment: damaging cancer cells' DNA with potent drugs while simultaneously preventing the cells from repairing themselves.

The findings being reported in the Aug. 14 issue of Molecular Cell help explain the promising results being seen in clinical trials of compounds that force cancer cells with genetic damage to self-destruct instead of "resting" while their DNA undergoes repairs.

"What we have shown suggests that you can use these drugs to sensitize cancer cells to DNA-damaging chemotherapy," said Geoffrey Shapiro, MD, PhD, senior author of the report. "This is a mechanism by which these inhibitory drugs may be synergistic with DNA-damaging agents."

Interestingly, Shapiro said, when the same repair-blocking drugs were administered to normal, non-cancerous cells, the cells became less sensitive to DNA damage from a chemotherapy drug. This is an encouraging indication that repair-blocking drugs may selectively make cancer cells vulnerable to chemotherapy while protecting normal cells from DNA damage, the scientists said.

Cells' native capacity for fixing DNA damage is normally beneficial, but it can be problematic for cancer therapy as it enables tumor cells to become resistant to a number of standard drug agents. All cells progress through a series of phases -- called the cell cycle -- including quiescence, or resting, growth, and cell division. The transition from one phase to the next is regulated by "checkpoint" proteins that, among other things, are designed to prevent damaged, potentially dangerous cells from reproducing.

The body deals with DNA-damaged cells in two ways. It can order them to self-destruct through "programmed cell death," also known as apoptosis. Or, it can issue signals from the checkpoint proteins to put the cells into "cell cycle arrest," causing them to remain quiescent while the broken DNA is fixed before they resume normal activity.

Repair-blocking drugs are designed to squelch the checkpoint proteins' signals, preventing the chemotherapy-damaged cancer cells from initiating the rest phase and undergoing repairs. Instead, they're forced to progress through the cell cycle and, because of their broken DNA, self-destruct through apoptosis. Accordingly, the tumor loses much of its power to develop resistance to drugs that attack DNA.

When a cell senses damage to its DNA, it triggers a series of events, called a "checkpoint cascade." Two major checkpoint proteins, cdk1 and cdk2, send signals that stop the cell cycle. At the same time, a flock of repair proteins are recruited to the site of the DNA damage.

In clinical trials aimed at disrupting the DNA-repair process, scientists are using inhibitor drugs to block cdk signaling. The drugs cause the damaged cells to bypass the checkpoint control and continue to grow and divide -- and ultimately die. Those trials are showing promising results, said Shapiro. He and his colleagues, in their new paper, demonstrate the molecular mechanism by which cdk inhibitors work, and they say that the explanation bodes well for continued research on the drugs.

Previously, it was known that cdk1 and cdk2 were virtually interchangeable in most cancer cells, and if one of the proteins malfunctioned or was knocked out, the other could compensate for it.

To find out if this overlap might pose a problem for cdk-inhibitor therapy, the researchers disabled just one of the proteins -- cdk1 -- in cultured lung cancer cells and treated the cells with cisplatin, a DNA-damaging agent. Even though the partner cdk2 protein was still active, the cdk1-depleted cancer cells failed to stop, rest, and repair themselves; it was evident that they were now more vulnerable to death from the cisplatin.

But how did the loss of just the one checkpoint protein disrupt the repair process?

The investigators showed that a key player in DNA repair -- the BRCA1 protein best known in its mutated form as an inherited breast cancer risk factor -- couldn't fulfill its mission in lung cancer cells lacking cdk1.

Going a step further, the researchers administered a cdk-inhibiting drug to lung cancer cells that hadn't been stripped of their cdk1 protein. In these cells, BRCA1 activity was reduced, demonstrating that the cdk inhibitors work in large part by keeping BRCA1 on the sidelines, weakening the DNA repair team.

"These results explain the observations seen in clinical trials" currently being conducted at Dana-Farber and elsewhere, said Shapiro, who is also an associate professor of medicine at Harvard Medical School. "The data give us confidence to go ahead with testing of cdk inhibitors in combination with DNA-damaging chemotherapy."

Lead author of the report is Neil Johnson, PhD, in Shapiro's lab. Others include Alan D'Andrea, MD, of Dana-Farber, and Jeffrey Parvin, MD, PhD, of Ohio State University.

The research was supported by grants from the National Institutes of Health as well as the Susan G. Komen Post-Doctoral Fellowship Award and an AstraZenica Sponsored Research Agreement.


Story Source:

The above story is based on materials provided by Dana-Farber Cancer Institute. Note: Materials may be edited for content and length.


Cite This Page:

Dana-Farber Cancer Institute. "Study Supports DNA Repair-blocker Research In Cancer Therapy." ScienceDaily. ScienceDaily, 20 August 2009. <www.sciencedaily.com/releases/2009/08/090817142843.htm>.
Dana-Farber Cancer Institute. (2009, August 20). Study Supports DNA Repair-blocker Research In Cancer Therapy. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2009/08/090817142843.htm
Dana-Farber Cancer Institute. "Study Supports DNA Repair-blocker Research In Cancer Therapy." ScienceDaily. www.sciencedaily.com/releases/2009/08/090817142843.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins