Featured Research

from universities, journals, and other organizations

Newly Discovered Mechanism In Cell Division Has Implications For Chromosome's Role In Cancer

Date:
August 27, 2009
Source:
University of Pennsylvania School of Medicine
Summary:
Errors in cell division can cause mutations that lead to cancer, and a new study could shed light on the role of chromosome abnormalities in uncontrolled cell replication. Researchers uncovered the molecular players and mechanism underlying a little-studied stage of cellular division called Anaphase B.

Montage of a fission yeast cell undergoing mitosis. The microtubule structures, including the spindle, are shown in red. The motor protein klp9p is shown in green. The motor binds to the spindle specifically at anaphase B onset, where it helps elongate the spindle.
Credit: Phong Tran, PhD, University of Pennsylvania School of Medicine; Developmental Cell

“A biologist, a physicist, and a nanotechnologist walk into a ...” sounds like the start of a joke. Instead, it was the start of a collaboration that has helped to decipher a critical, but so far largely unstudied, phase of how cells divide. Errors in cell division can cause mutations that lead to cancer, and this study could shed light on the role of chromosome abnormalities in uncontrolled cell replication.

The biologist in question is University of Pennsylvania School of Medicine Associate Professor of Cell and Developmental Biology, Phong Tran, PhD. With physicist Francois Nedelec of the European Molecular Biology Laboratory in Heidelberg, Germany, and Guilhem Velve-Casquillas, PhD, a postdoc in Tran's lab who helped develop a device requiring nano-scale technology used in the study, Tran uncovered the molecular players and mechanism underlying a little-studied stage of cellular division called Anaphase B.

Anaphase B is just one part of the complex molecular choreography that is cell division. The process is akin to two children dividing up their Halloween candy: collect your candy, pile it in the middle, and divide it into two equal portions.

In cell division – the creation of two daughter cells from one -- it is the doubled chromosomes that are piled in the middle to be sorted. The cell condenses the chromosomes, arranges them at the midpoint of the dividing cell, sends half to either end of the cell, and then forms a new cell membrane around each pool. Anaphase is the step in cellular division during which the chromosomes physically separate and are dragged to either end of the cell. And it’s during this coming together and pulling apart of the chromosomes that such mistakes as breakages and uneven sorting can lead to cancerous mutations.

The physical structure that both organizes and facilitates the steps of Anaphase is the spindle, and it is comprised of molecular struts called microtubules, as well as microtubule-associated proteins, or MAPs, and molecular motors, which provide the required physical force to move chromosomes. From fixed points called spindle poles, at either end of the cell, microtubules extend towards the midline of the cell, some capturing and positioning chromosomes at the midline, others reaching further to overlap with microtubules originating from the other side of the cell. What happens next – Anaphase -- is actually two discrete processes. During Anaphase A, the chromosome-associated microtubules drag the chromosomes towards either spindle pole; Anaphase B occurs as the overlapping microtubules at the midzone move past one another to physically push the spindle poles apart.

In the August 14 issue of Developmental Cell, the team reports that a molecular motor protein called Klp9p and the microtubule-associated protein Ase1p form a complex and bind to the midzone of the spindle – a sort of molecular scaffold that ensures a critical step: equal division of genetic material between two daughter cells of cell division. They also found that this interaction is regulated by a molecular switch, which is coordinated by two other proteins Cdc2p and Clp1p.

"We now have a mechanism to describe Anaphase B, which was not well described up to now," Tran says.

Anaphase A, Tran notes, has been extensively studied. He wanted to understand what happens during Anaphase B. So his team, led by postdoctoral fellow Chuanhai Fu, PhD, began systematically mutating molecular motors in the fission yeast, Schizosaccharomyces pombe and then clocking each mutant's cell division. Only in cells containing mutant Klp9p was Anaphase B significantly slower. The team then showed that Klp9p and Ase1p come together at the midzone during Anaphase B and that this interaction is required for proper spindle architecture and function. What’s more, this necessary Klp9p-Ase1p complex is blocked by Cdc2p. But, taking away phosphates from Klp9p and Ase1p by the other protein Clp1p just prior to Anaphase B releases the block, enabling the two proteins to form their complex so cellular division can continue.

“Many molecules have been implicated with the spindle midzone, but no details have been brought up in terms of molecular motors, microtubule-associated proteins, and their binding and regulation by the phosphate switch,” Tran says. Now, however, “we have a very detailed and complete description of four molecules” -- Klp9p, Ase1p, Cdc2p, and Clp1p – each playing a role in one aspect of cellular division, Anaphase B."

The molecular machinery, Tran concludes, "is mechanically very beautiful."

According to Tran, the findings have potential implications for cancer biology, in that inappropriate chromosomal segregation can lead to aneuploidies (cells lacking the proper number of chromosomes), which is a hallmark of many cancers.

The study was funded by the National Institutes of General Medical Sciences, the American Cancer Society, ARC, HFSP, ANR, FRM, LaLigue, BioMS, and the Volkswagen-Stiftung.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Newly Discovered Mechanism In Cell Division Has Implications For Chromosome's Role In Cancer." ScienceDaily. ScienceDaily, 27 August 2009. <www.sciencedaily.com/releases/2009/08/090817143608.htm>.
University of Pennsylvania School of Medicine. (2009, August 27). Newly Discovered Mechanism In Cell Division Has Implications For Chromosome's Role In Cancer. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2009/08/090817143608.htm
University of Pennsylvania School of Medicine. "Newly Discovered Mechanism In Cell Division Has Implications For Chromosome's Role In Cancer." ScienceDaily. www.sciencedaily.com/releases/2009/08/090817143608.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins