Featured Research

from universities, journals, and other organizations

Confined Electrons Live Longer

Date:
August 27, 2009
Source:
Forschungszentrum Dresden Rossendorf
Summary:
Electrons that are trapped in very small structures of only a few nanometer, demonstrate fascinating features. These could be useful for novel computers or semiconductor lasers. Researchers have measured for the first time the exact lifetime of excited electrons.

TEM picture of a quantum dot on a gallium arsenide layer. On top is a glue layer due to TEM preparation only.
Credit: University of Sheffield

Electrons that are trapped in very small structures of only a few nanometer, demonstrate fascinating features. These could be useful for novel computers or semiconductor lasers. Researchers from the University of Sheffield, the Ecole Normale Supιrieure in Paris, and the Forschungszentrum Dresden-Rossendorf research center measured for the first time the exact lifetime of excited electrons and published their findings in the journal Nature Materials.

Related Articles


For many applications it is highly desirable that electrons, excited to a higher energy state, take a long time until they relax back to the ground state. This is a key ingredient for any kind of laser, but also would be desirable for modern applications in quantum information processing (where also the phase coherence should be conserved).

Starting about 20 years ago, researchers have been able to grow so-called quantum dots on standard semiconductor substrates, such as gallium arsenide (the material used e.g. in CD players). These dots are tiny pyramids, containing typically between 1,000 and 10,000 atoms of a different semiconductor material than the substrate in which they are embedded. As the volumes of the dots are extremely small, the electrons follow quantum-mechanical rules and are supposed to enter only sharply defined energetic states. Furthermore, the electrons are confined in all three directions, and thus they represent a kind of artificial atom, which could become a building block of revolutionary future (opto-)electronic devices.

At that time it was predicted that excited electrons should live for a very long time in these quantum dots, since they hardly find any ways in which to lose their energy. For many years it has remained a puzzle why such long lifetimes, also called the “phonon bottleneck” at that time, were never observed. Further work a few years back has shed new light on this issue: Due to the strong confinement of the electrons, the well known theory describing the loss of energy of electrons to lattice vibrations (phonons) is not applicable, since the electrons form entities which are strongly coupled with phonons, so-called polarons.

Now, taking seriously the predictions of this new theory, researchers from University of Sheffield, UK, Ecole Normale Superieure in Paris, France, and Forschungszentrum Dresden-Rossendorf in Germany have designed quantum dots which allow a rigid test of the theory over a wide parameter range. By making the separation of the energy levels in the quantum dots significantly smaller than the energy of the most important lattice vibration, they were able to observe lifetimes which differed by a factor of thousand for an energy separation which only varied by a factor of two. In numbers, the relaxation time increased from few picoseconds (a millionth of a millionth of a second) to nanoseconds (a thousandth of a millionth of a second), when reducing the electron energy only by half. These long lifetimes, although being of different origin than the originally proposed “phonon bottleneck”, could open a wealth of applications, in particular for terahertz (THz) devices based on quantum dots. The reason for this lies in the fact that the relevant energy level separation is of the order of 10-20 milli-electronvolt (meV), which can be expressed as a frequency of a few THz.

In order to accurately measure these lifetimes, the researchers used a unique type of short-pulse terahertz laser, a so-called free-electron laser (FEL), located at the Forschungszentrum Dresden-Rossendorf. In this free-electron laser high-intensity infrared and terahertz pulses can be generated at a wide range of wavelengths (or frequencies) to fit many kinds of scientific problems in physics, chemistry and biology. In this collaboration, the access of the UK researchers to this FEL facility was supported by the EU through a transnational access programme.


Story Source:

The above story is based on materials provided by Forschungszentrum Dresden Rossendorf. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. A. Zibik et al. Long lifetimes of quantum-dot intersublevel transitions in the terahertz range. Nature Materials, Online 16 August 2009 DOI: 10.1038/NMAT2511

Cite This Page:

Forschungszentrum Dresden Rossendorf. "Confined Electrons Live Longer." ScienceDaily. ScienceDaily, 27 August 2009. <www.sciencedaily.com/releases/2009/08/090819083901.htm>.
Forschungszentrum Dresden Rossendorf. (2009, August 27). Confined Electrons Live Longer. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/08/090819083901.htm
Forschungszentrum Dresden Rossendorf. "Confined Electrons Live Longer." ScienceDaily. www.sciencedaily.com/releases/2009/08/090819083901.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) — Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) — A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins