Featured Research

from universities, journals, and other organizations

Disrupting A Destructive Duo: Researchers Inhibit Cancer Proteins

Date:
August 24, 2009
Source:
University of Toronto
Summary:
Researchers have developed a new way to split up a dangerous pair of cancer proteins, a finding that could ultimately lead to chemotherapy that is more effective and has fewer side effects.

A research team led by University of Toronto Mississauga scientists has developed a new way to split up a dangerous pair of cancer proteins, a finding that could ultimately lead to chemotherapy that is more effective and has fewer side effects.

Working with scientists at the University of Central Florida and the Princess Margaret Hospital, Professor Patrick Gunning of the Department of Chemical and Physical Sciences has created several molecules that inhibit Stat3, a protein that--in cancer cells--pairs with another copy of itself and goes haywire. The findings appear in the September issue of the journal ChemBioChem: A European Journal of Chemical Biology.

"The molecules we have created are particularly nice because they're showing selectivity against cancer cells but not against healthy cells," says senior author Gunning. "This molecule could be used in conjunction with typical chemotherapeutics, and it could mean that drugs will have less resistance-so you could use lower dosages and cause fewer side effects."

The Stat3 protein is involved in almost all cancers, and is known to contribute to the resistance of cancer cells to current drug therapies. "Most currently available therapeutics aim to induce cell death," says Gunning. "We wanted to make small molecules that could try and stop this protein."

In cancerous cells, Stat3 proteins bind together to work as a lethal pair, and inhibitors work to prevent this. This type of protein-protein interaction is notoriously difficult to counter. Gunning's team targeted binding "hotspots" on a known Stat3 inhibitor called S3I-201. They chemically altered the inhibitor to produce several new variants, which they then tested on Stat3.

In in vitro studies, some variants proved to be even more powerful than S3I-201, and showed activity against prostate, breast and acute myeloid leukemia cancer cell lines. "These are some of the most potent inhibitors in the literature so far for this particular protein," says Gunning. "In some cases, they were more than twice as effective as the existing inhibitor."

When the team used more complex cancer cell models, they found the inhibitors survived the passage across the cell membrane and still targeted the Stat3 cancer proteins inside. Gunning and his colleagues are working to make the new inhibitors even more effective, as well as more metabolically stable, meaning that they can survive the chemical defense mechanisms within the cell.

The Leukemia and Lymphoma Society of Canada, the University of Toronto and the National Institutes of Health funded the study. Gunning's team is currently studying the use of their new inhibitors alongside traditional chemotherapy drugs.


Story Source:

The above story is based on materials provided by University of Toronto. Note: Materials may be edited for content and length.


Cite This Page:

University of Toronto. "Disrupting A Destructive Duo: Researchers Inhibit Cancer Proteins." ScienceDaily. ScienceDaily, 24 August 2009. <www.sciencedaily.com/releases/2009/08/090820124127.htm>.
University of Toronto. (2009, August 24). Disrupting A Destructive Duo: Researchers Inhibit Cancer Proteins. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2009/08/090820124127.htm
University of Toronto. "Disrupting A Destructive Duo: Researchers Inhibit Cancer Proteins." ScienceDaily. www.sciencedaily.com/releases/2009/08/090820124127.htm (accessed September 20, 2014).

Share This



More Health & Medicine News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com
How The 'Angelina Jolie Effect' Increased Cancer Screenings

How The 'Angelina Jolie Effect' Increased Cancer Screenings

Newsy (Sep. 19, 2014) Angelina's Jolie's decision to undergo a preventative mastectomy in 2013 inspired many women to seek early screenings for the disease. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins