Featured Research

from universities, journals, and other organizations

Let There Be Light: Teaching Magnets To Do More Than Just Stick Around

Date:
August 24, 2009
Source:
University of Washington
Summary:
Chemists have found a way to train tiny semiconductor crystals, called nanocrystals or quantum dots, to display new magnetic functions at room temperature using light as a trigger.

Strong dopant-exciton magnetic exchange coupling in doped QDs can allow formation of magnetic polarons, where the spins of the dopants spontaneously align with the exciton spin. Key: Small green arrows: Mn2+ spins. Big yellow arrow: exciton spin. h½ = photoexcitation. EMP = excitonic magnetic polaron. rad = radiative decay. SLR = magnetic relaxation. Bext = external magnetic field.
Credit: Image courtesy of Daniel Gamelin/University of Washington

That palm tree magnet commemorating your last vacation is programmed for a simple function – to stick to your refrigerator. Similarly, semiconductors are programmed to convey bits of information small and large, processing information on your computer or cell phone.

Scientists are working to coax those semiconductors to be more than conveyers, to actually perform some functions like magnets, such as data recording and electronic control. So far most of those effects could only be achieved at very cold temperatures: minus 260 degrees Celsius or more than 400 below zero Fahrenheit, likely too cold for most computer users.

However, researchers led by a University of Washington chemist report on Aug. 21 in Science that they have been able to train tiny semiconductor crystals, called nanocrystals or quantum dots, to display new magnetic functions at room temperature using light as a trigger.

Silicon-based semiconductor chips incorporate tiny transistors that manipulate electrons based on their charges. Scientists also are working on ways to use electricity to manipulate the electrons' magnetism, referred to as "spin," but are still searching for the breakthrough that will allow "spintronics" to function at room temperature without losing large amounts of the capability they have at frigid temperatures.

The team led by Daniel Gamelin, a UW chemistry professor, has found a way to use photons – tiny light particles – to manipulate the magnetism of semiconductor nanocrystals efficiently, even up to room temperature.

"This provides a completely new approach to microelectronics, if you can use spin instead of charge to process information and use photons to manipulate that process," Gamelin said. "It opens the door to materials that store information and perform logic functions at the same time without the need for super cooling."

The team used nanocrystals of a cadmium-selenium semiconductor called cadmium selenide, but replaced some nonmagnetic cadmium ions with magnetic manganese ions. The crystals, smaller than 10 nanometers across (a nanometer is one-billionth of an inch), were then suspended in a colloid solution, like droplets of cream suspended in milk.

Beams of photons were used to align all of the manganese ions' spins, creating magnetic fields as much as 500 times more powerful than in the same semiconductor material without manganese. The magnetic effects were strongest at low temperatures, but remained remarkably strong up to room temperature, Gamelin said.

Besides Gamelin, authors of the Science paper are Rémi Beaulac and Paul Archer of the UW and Lars Schneider and Gerd Bacher of the University of Duisburg-Essen in Germany.

In a second paper published Sunday (Aug. 16) in the online edition of Nature Nanotechnology, Gamelin's group reported related effects in semiconductor nanocrystals made of zinc oxide but also containing small amounts of manganese impurities.

With zinc oxide, photons acted more as an on-off switch – once photons altered the zinc oxide's magnetism, the photon stream could be removed and the effect remained in place until another stimulus was applied to turn the effect off again.

Besides Gamelin, authors of the Nature Nanotechnology paper are Stefan Ochsenbein, Yong Feng, Kelly Whitaker, Ekaterina Badaeva, William Liu and Xiaosong Li, all of the UW.

Some behaviors described in the papers have been seen previously at very low temperatures, but in those cases the active materials were embedded in other crystals and so could not be isolated or processed. Suspending the nanocrystals in a colloid solution brings the magnetic effects into a new functional form that could be useful for integration with unconventional materials, Gamelin said. For example, the solution containing the crystals could be applied to a film using a device like an ink jet printer, or interfaced with carbon-based materials using techniques not typically practical for magnetic semiconductors.

"We've brought these spin effects into a processable form," he said. "I think both of these papers are converging on the same applications. We're exploring how to manipulate spins in these nanostructures and perhaps opening the door for some exciting new technologies."

Funding for the work in the two papers came from the U.S. National Science Foundation, the Dreyfus Foundation, the Sloan Foundation, the Natural Sciences and Engineering Research Council of Canada, the German Research Foundation, Gaussian Inc., the Research Corp., the Swiss National Science Foundation and the University of Washington.


Story Source:

The above story is based on materials provided by University of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University of Washington. "Let There Be Light: Teaching Magnets To Do More Than Just Stick Around." ScienceDaily. ScienceDaily, 24 August 2009. <www.sciencedaily.com/releases/2009/08/090820161127.htm>.
University of Washington. (2009, August 24). Let There Be Light: Teaching Magnets To Do More Than Just Stick Around. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2009/08/090820161127.htm
University of Washington. "Let There Be Light: Teaching Magnets To Do More Than Just Stick Around." ScienceDaily. www.sciencedaily.com/releases/2009/08/090820161127.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) — Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) — Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins