Featured Research

from universities, journals, and other organizations

New Therapeutic Target Could Help Patients With Pulmonary Fibrosis

Date:
August 27, 2009
Source:
University of Michigan Health System
Summary:
Researchers have discovered that targeting of a novel gene utilizing genetic and pharmacologic strategies was successful in treating pulmonary fibrosis in mice and will be developed for future testing in humans.

A diagnosis of Idiopathic Pulmonary Fibrosis is not much better than a death sentence: there is no treatment and the survival rate is less than three years.

Related Articles


But researchers at the University of Michigan have discovered that targeting of a novel gene utilizing genetic and pharmacologic strategies was successful in treating pulmonary fibrosis in mice and will be developed for future testing in humans.

The treatments attack an oxidant-generating enzyme, NOX4, that researchers discovered is involved in the fibrotic process — which involves scar-like tissue formation in an organ such as the lung. The researchers' findings will be published in the September issue of the journal Nature Medicine.

"We've identified the target. We know the enemy now," said Subramaniam Pennathur, M.D., assistant professor of internal medicine/nephrology. "This is the first study that shows pulmonary fibrosis is driven by this NOX4 enzyme.

"But what's really significant is this discovery may have relevance to fibrosis in other organ systems, not just the lung."

So those suffering from common cardiac or kidney diseases, which often involve fibrosis, also may benefit from treatments stemming from this research, Pennathur said.

Pennathur said continued support from the National Institutes of Health will eventually allow researchers to take the treatment to human studies. The University of Michigan also has filed for patent protection and is currently looking for a licensing partner to help bring the technology to market.

The discovery was made in the University of Michigan lab of Victor J. Thannickal, M.D. He was assisted by Louise Hecker, Ph.D., a post-doctoral research fellow.

Thannickal said the study points to a very viable treatment strategy for idiopathic pulmonary fibrosis, and researchers saw success both in mouse models of lung fibrosis and in fibrogenic cells isolated from lungs of patients with Idiopathic Pulmonary Fibrosis.

"It remains to be seen if fibrosis is reversible," he said. "But therapeutic targeting of this pathway this may allow us to halt the progression of fibrosis and preserve lung function."

The lung disease often affects older people, Thannickal said, and its cause is generally unknown. It is possible that cumulative injuries like exposure to environmental toxins and pollutants in genetically susceptible individuals could contribute to causing fibrosis.

There is a gradual scarring of the lung, thickening and contracting the organ until it loses its ability to exchange oxygen with blood, Hecker said. Patients experience extreme fatigue, rapid weight loss, chronic cough and shortness of breath.

There are five million people worldwide that are affected by this disease, according to the Pulmonary Fibrosis Foundation. In the United States there are over 100,000 patients with Pulmonary Fibrosis.

When U-M researchers induced the fibrotic process in the mice, they discovered that the NOX4 enzyme was elevated. By knocking down that enzyme at the genetic level or inhibiting its activity, the fibrosis was stopped, Hecker said.

"So we may be able to halt lung scarring even after the injury has occurred and fibrosis is set in motion," she said. "This research provides proof of concept that we can target this pathway for therapeutic benefit, which could potentially be used in humans."

Both Hecker and Thannickal left U-M this summer for the University of Alabama at Birmingham, but they plan to continue to work with Pennathur and other U-M researchers on anti-fibrotic therapies based on these studies. The patent will stay with U-M.


Story Source:

The above story is based on materials provided by University of Michigan Health System. Note: Materials may be edited for content and length.


Cite This Page:

University of Michigan Health System. "New Therapeutic Target Could Help Patients With Pulmonary Fibrosis." ScienceDaily. ScienceDaily, 27 August 2009. <www.sciencedaily.com/releases/2009/08/090823184347.htm>.
University of Michigan Health System. (2009, August 27). New Therapeutic Target Could Help Patients With Pulmonary Fibrosis. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/08/090823184347.htm
University of Michigan Health System. "New Therapeutic Target Could Help Patients With Pulmonary Fibrosis." ScienceDaily. www.sciencedaily.com/releases/2009/08/090823184347.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins