Featured Research

from universities, journals, and other organizations

Researchers Examine Mechanisms That Help Cancer Cells Proliferate

Date:
September 4, 2009
Source:
UT Southwestern Medical Center
Summary:
A process that limits the number of times a cell divides works much differently than had been thought, opening the door to potential new anticancer therapies, researchers report.

A process that limits the number of times a cell divides works much differently than had been thought, opening the door to potential new anticancer therapies, researchers at UT Southwestern Medical Center report in the Aug. 7 issue of the journal Cell.

Related Articles


Most cells in the human body divide only a certain number of times, via a countdown mechanism that stops them. When the controlling process goes wrong, the cells divide indefinitely, contributing to cancer growth.

The number of times a cell divides is determined by special segments of DNA called telomeres, which are located at the ends of each chromosome. Every time a cell divides, the telomeres get shorter. When they are reduced to a certain length, the cell stops dividing.

In the new study, UT Southwestern researchers used both normal and cancerous human cells to examine closely how telomeres behave during cell division.

As a cell prepares to divide into two new cells, its ladder-shaped DNA "unzips," creating two halves, each resembling a single upright of a ladder with a set of half-length rungs. Fresh genetic material then fills in the rungs and a second upright. This process creates two identical sets of chromosomes that will be allotted between the two cells.

From earlier studies on model organisms such as yeast, scientists thought that all telomeres replicated late in the stage of overall DNA replication, and by the same processes. The new study suggests that telomeres replicate at various times during this stage, except for a final step that is not completed until the very end, via a different, unknown mechanism.

"Interfering with replication of telomeres might provide a way to halt uncontrolled spread of cancer cells," said Dr. Woodring Wright, professor of cell biology at UT Southwestern and co-senior author of the paper.

The researchers also examined an enzyme called telomerase, which "rebuilds" telomeres so they do not get shorter and signals the cell to stop dividing. Normally, telomerase is only active in cells such as stem cells and dividing immune cells, which must reproduce constantly.

But telomerase also has a dark side: When active in cancer cells, it enables unlimited growth, a hallmark of cancer.

It had been thought that telomerase only works on the shortest telomeres in a cell, but in the new study, the UT Southwestern researchers found that telomerase rebuilds most or all of the telomeres in a cell for each division, not just the shortest ones, as had been thought.

"Understanding ways to inhibit this telomerase mechanism might lead to novel anticancer therapies," said Dr. Jerry Shay, professor of cell biology and co-senior author of the paper.

Clinical trials using a drug that blocks telomerase are already under way at UT Southwestern for lung cancer and chronic lymphocytic leukemia.

The new study was possible because the researchers developed a way to examine the very ends of telomeres after a single cell division. Previous research in the field required multiple cell divisions to detect such changes.

"Now that we can look at what telomerase is doing in a single cell-division cycle, there is potential for a tremendous number of follow-up studies," Dr. Wright said.

Other UT Southwestern researchers involved in the study were lead author Dr.Yong Zhao, postdoctoral researcher in cell biology; Dr. Agnel Sfeir, former graduate student in integrative biology; Dr. Ying Zou, former graduate student in genetics and development; graduate student Christen Buseman; and graduate student Tracy Chow.

The research was funded by the National Institutes of Health, the American Federation for Aging Research and the Department of Defense Breast Cancer Program.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

UT Southwestern Medical Center. "Researchers Examine Mechanisms That Help Cancer Cells Proliferate." ScienceDaily. ScienceDaily, 4 September 2009. <www.sciencedaily.com/releases/2009/09/090901122639.htm>.
UT Southwestern Medical Center. (2009, September 4). Researchers Examine Mechanisms That Help Cancer Cells Proliferate. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2009/09/090901122639.htm
UT Southwestern Medical Center. "Researchers Examine Mechanisms That Help Cancer Cells Proliferate." ScienceDaily. www.sciencedaily.com/releases/2009/09/090901122639.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins