Featured Research

from universities, journals, and other organizations

Blood Vessels Contribute To Their Own Growth And Oxygen Delivery To Tissues And Tumors

Date:
September 15, 2009
Source:
University of North Carolina School of Medicine
Summary:
Researchers have identified a new biological process that spurs the growth of new blood vessels. Vascular networks form and expand by “sprouting,” similar to the way trees grow new branches. The process allows fresh oxygen and nutrients to be delivered to tissues, whether in a developing embryo or a cancerous tumor. Up until now, scientists thought that the molecular signals to form new sprouts came from outside the vessel. But new research has shown that signals can also come from within the blood vessel, pushing new blood vessel sprouts outward.

Researchers at the University of North Carolina at Chapel Hill School of Medicine and the College of Arts & Sciences have identified a new biological process that spurs the growth of new blood vessels.

Vascular networks form and expand by “sprouting,” similar to the way trees grow new branches. The process allows fresh oxygen and nutrients to be delivered to tissues, whether in a developing embryo or a cancerous tumor. Up until now, scientists thought that the molecular signals to form new sprouts came from outside the vessel. But new research from UNC has shown that signals can also come from within the blood vessel, pushing new blood vessel sprouts outward.

The findings, published in the Sept. 15 issue of the journal Developmental Cell, could give important insights into the formation of the vasculature needed to feed new tumors.

In experiments using mouse embryonic stem cells and mouse retinas, the researchers found that defects in a protein called Flt-1 lead to abnormal sprouts and poor vessel networks. Other research recently showed that levels of Flt-1 protein are particularly low in the dilated and leaky blood vessels that supply tumors with oxygen.

“The blood vessels themselves seem to participate in the process guiding the formation of the vascular network,” said senior study author Victoria L. Bautch, Ph.D., professor of biology at UNC. “They do not just passively sit there getting acted upon by signals coming from the outside in. Rather, they produce internal cues that interact with external cues to grow.”

The growth of new blood vessels can be stimulated by cascades of events within the cell – known as pathways – the most notable of which centers around the three proteins Flt-1, Flk-1 and VEGF. Scientists have known for years that Flk-1 is a positive regulator that responds to VEGF by pulling the emerging sprout outward from its parent blood vessel.

The role of its sister protein Flt-1, however, was not clearly understood. Bautch and colleagues hypothesized that Flt-1 is a negative regulator -- soaking up VEGF molecules so they are not available to interact with Flk-1 and signal for new blood vessels.

The researchers mixed two different types of mouse embryonic stem cells – one batch with normal Flt-1 protein levels, the other with no Flt-1 protein. They found that the genetic makeup of the area at the base of the sprout – rather than at the sprout itself – determined whether the sprout behaved normally or abnormally.

“The cells on each side of sprout produce and send out the soluble form of the protein, blocking the sprout from forming anywhere but in one spot and in one direction,” says Bautch. “So when the sprout first forms, instead of flopping back onto its parent vessel, it has a corridor to push it forward away from the parent.”

Bautch, who is also a member of the Program in Molecular Biology and Biotechnology, the UNC McAllister Heart Institute and UNC Lineberger Comprehensive Cancer Center, notes that the more scientists understand about the sophistication and complexity of the mechanisms guiding the formation of blood vessel sprouts, the better equipped they will be to develop therapeutic interventions to produce or to halt new blood vessels.

Funding for study came from the National Institutes of Health and the American Heart Association. Study co-authors from UNC include John C. Chappell, Ph.D., postdoctoral fellow; and Sarah M. Taylor, graduate student.


Story Source:

The above story is based on materials provided by University of North Carolina School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of North Carolina School of Medicine. "Blood Vessels Contribute To Their Own Growth And Oxygen Delivery To Tissues And Tumors." ScienceDaily. ScienceDaily, 15 September 2009. <www.sciencedaily.com/releases/2009/09/090914173014.htm>.
University of North Carolina School of Medicine. (2009, September 15). Blood Vessels Contribute To Their Own Growth And Oxygen Delivery To Tissues And Tumors. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2009/09/090914173014.htm
University of North Carolina School of Medicine. "Blood Vessels Contribute To Their Own Growth And Oxygen Delivery To Tissues And Tumors." ScienceDaily. www.sciencedaily.com/releases/2009/09/090914173014.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins