Featured Research

from universities, journals, and other organizations

Chinks In ISS Armour Deliver Data On Space Junk Impacts

Date:
September 17, 2009
Source:
European Space Agency
Summary:
Speeding along in orbit at more than seven kilometres per second, the International Space Station has its surfaces carefully shielded against potentially catastrophic collisions with micrometeoroids or man-made debris. Except that is for a trio of unprotected panels until recently attached to external payload platform of ESA’s Columbus module, specifically intended to sustain impacts from tiny specks of space dust.

Close-up of DEBIE-2 sensors, (far right). Photo taken during the first EVA of STS-128 mission, just before EuTEF retrieval.
Credit: Image courtesy of European Space Agency

Each pointing in a different direction – forward in the direction of orbit, upwards and sideways out to space - the three 10 by 10 cm aluminium foil panels formed the sensor units of an instrument called the DEBris In-orbit Evaluator-2 (DEBIE-2), returning telemetry on impact events to a separate data processing unit.

Related Articles


These units were sited on the European Technology Exposure Facility (EuTEF) which was mounted on the Columbus exterior until returned to Earth on the Space Shuttle this week. Columbus is an ideal position for impact monitoring since the module forms part of the leading edge of the International Space Station (ISS).

There are around 13 000 catalogued pieces of orbital debris larger than 10 cm across. These are big enough to be tracked by terrestrial radar so the ISS, the Shuttle and other satellites can manoeuvre out of their path. In addition there are many millions more items too small to be monitored from the ground. Traditionally most of what is known about these orbital populations has come from simply examining space hardware returned to Earth and counting the number and size of impact craters they have sustained while in orbit.

However the DEBIE system actively measures impact energies and velocities as strikes occur. Possessing only a limited detection area – three times 100 cm2 – the instrument is designed around impacts from particles around a micrometre (a thousandth of a millimetre) in size, the type of debris about which least is known.

Around the same size as smoke particles, they may be tiny but their effect is still dramatic: impacting at hypersonic velocities, they briefly heat the aluminium foil locally to thousands of degrees Kelvin, hotter than the surface of the Sun. This forms a charged plasma cloud whose charge is measured by positive and negative plasma detectors adjacent to the foil. Meanwhile a piezoelectric device converts the force of impact into an electric charge, providing additional information on particle momentum. And if a particle strikes with foil-piercing force then another plasma detector behind the foil performs measurements.

Such small particles pose little danger to the ISS. DEBIE-2’s results are important however for understanding the general characteristics and behaviour of space debris, to feed into future spacecraft designs.

"One of the surprises we have found so far is that impact events come in clusters and are not randomly distributed," explains Gerhard Drolshagen of ESA’s Space Environment & Effects Section, DEBIE-2 Principal Investigator. "These peaks can be concentrated within the space of perhaps a minute to 80 seconds at a time, indicating the existence of clouds of dust along the ISS’ orbit."

These particles might be either natural or artificial in origin. Asteroids and comets leave trails of fine dust behind them while solid rocket boosters often used to transfer satellites into higher orbits spray out fine droplets of aluminium oxide.

Second in the DEBIE series

The first ever standardised impact detector, DEBIE was based on an initial concept by a UK company and then developed under ESA contract by companies in Finland.

DEBIE-1 operated in a 600 km orbit on board ESA’s Proba technology demonstrator satellite for a total of five years from its launch in 2001. DEBIE-2, was launched aboard the same Shuttle that delivered Columbus to the ISS in February 2008, then installed during a subsequent spacewalk.

"We had some operational problems to start off with but updated software installed in December improved our reliability," says Alessandra Menicucci DEBIE-2 Co-Investigator. "Since then we have been gathering data 70-80% of the time."

DEBIE-2 has now been returned to Earth after 1.5 years of exposure to open space in low Earth orbit, along with the other eight instruments within EuTEF, as part of the Shuttle mission STS-128 / 17A on 10 September. The instrument could potentially then be refurbished for another space mission in future– the team would like to make measurements from the Moon or around the L2 Lagrangian Point in space behind Earth where a number of science missions are planned in the next decade.

"We’re also considering a bigger detector capable of getting information on bigger particles in the future," concludes Mr Drolshagen. "Around 0.5 mm is where you start to be really concerned; that size could cut a wire or damage the soft part of an astronaut’s spacesuit."


Story Source:

The above story is based on materials provided by European Space Agency. Note: Materials may be edited for content and length.


Cite This Page:

European Space Agency. "Chinks In ISS Armour Deliver Data On Space Junk Impacts." ScienceDaily. ScienceDaily, 17 September 2009. <www.sciencedaily.com/releases/2009/09/090916123643.htm>.
European Space Agency. (2009, September 17). Chinks In ISS Armour Deliver Data On Space Junk Impacts. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/2009/09/090916123643.htm
European Space Agency. "Chinks In ISS Armour Deliver Data On Space Junk Impacts." ScienceDaily. www.sciencedaily.com/releases/2009/09/090916123643.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Space & Time News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Video Shows Stars If They Were as Close to Earth as Sun

Video Shows Stars If They Were as Close to Earth as Sun

Buzz60 (Jan. 30, 2015) Russia&apos;s space agency created a video that shows what our sky would look like with different star if they were as close as our sun. Patrick Jones (@Patrick_E_Jones) walks us through the cool video. Video provided by Buzz60
Powered by NewsLook.com
Dog-Loving Astronaut Wins Best Photo of 2015

Dog-Loving Astronaut Wins Best Photo of 2015

Buzz60 (Jan. 30, 2015) Retired astronaut and television host, Leland Melvin, snuck his dogs into the NASA studio so they could be in his official photo. As Mara Montalbano (@maramontalbano) shows us, the secret is out. Video provided by Buzz60
Powered by NewsLook.com
NASA Holds Memorial to Remember Astronauts

NASA Holds Memorial to Remember Astronauts

AP (Jan. 29, 2015) NASA is remembering 17 astronauts who were killed in the line of duty and dozens more who have died since the agency&apos;s beginning. A remembrance ceremony was held Thursday at NASA&apos;s Marshall Space Flight Center in Alabama. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Asteroid's Moon Spotted During Earth Flyby

Asteroid's Moon Spotted During Earth Flyby

Rumble (Jan. 27, 2015) Scientists working with NASA&apos;s Deep Space Network antenna at Goldstone, California discovered an unexpected moon while observing asteroid 2004 BL86 during its recent flyby past Earth. Credit to &apos;NASA JPL&apos;. Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins