Featured Research

from universities, journals, and other organizations

Ganymede Makes Big Impression On Jupiter's Auroral Lightshows

Date:
September 19, 2009
Source:
Europlanet Media Centre
Summary:
Studies of features in Jupiter’s spectacular and rapidly changing aurorae have given new insights into the complex electromagnetic interactions between the giant planet and two of its innermost moons. As Ganymede and Io orbit Jupiter, they interact with regions of plasma and generate electromagnetic waves that are projected along Jupiter’s magnetic field lines towards Jupiter’s poles where they cause auroral bright spots. Scientists from the University of Liège in Belgium have used thousands of images taken by the Hubble Space Telescope in ultraviolet wavelengths to monitor these auroral features in unprecedented detail.

Last frame of movie showing the northern auroral region of Jupiter. Actual duration of sequence ~30 minutes. The bulk of the aurora rotates with the planet.
Credit: Grodent/HST Team

Studies of features in Jupiter’s spectacular and rapidly changing aurorae have given new insights into the complex electromagnetic interactions between the giant planet and two of its innermost moons.

As Ganymede and Io orbit Jupiter, they interact with regions of plasma and generate electromagnetic waves that are projected along Jupiter’s magnetic field lines towards Jupiter’s poles where they cause auroral bright spots. Scientists from the University of Liège in Belgium have used thousands of images taken by the Hubble Space Telescope in ultraviolet wavelengths to monitor these auroral features in unprecedented detail.

“Each of these auroral structures is telling an ongoing story about vast transfers of energy taking place far away from the planet. By analysing the exact locations of these features and how their shape and brightness changes as Io and Ganymede move in their orbit around Jupiter, we have created the most detailed picture to date of how Jupiter and these moons are electromagnetically interconnected,” said Dr Denis Grodent, who will be presenting results at the European Planetary Science Congress in Potsdam, Germany, on Thursday 17 September.

Uniquely amongst Jupiter’s moons, Ganymede has a strong enough magnetic field to carve a protective magnetic bubble within Jupiter’s powerful magnetosphere. Analysis of the Hubble images by Grodent and his colleagues has allowed them to measure accurately the size of the Ganymede auroral footprint for the first time. They have found that it is too big to be a simple projection of Ganymede’s cross-section. However, using a three-dimensional computer model to map the footprint back along the field lines, the team has found that it corresponds well with the diameter of Ganymede’s mini-magnetosphere.

In addition, the sequences of Hubble images revealed unexpected brightness variations of Ganymede’s auroral footprint at three different timescales: 100 seconds, 10 to 40 minutes, and 5 hours.

“Each of these timescales appears to refer to a specific aspect of the Ganymede-Jupiter interaction and allows us to identify possible actors of this interaction. The 5 hour variation appears to be linked to the rotational period of Jupiter’s magnetic field and the movement of Ganymede through the tilted plasma sheet that surrounds the planet. The 10-40 minute variations could be due to sudden changes in energy due to plasma being injected into the system and the 100 second pulses may be linked to bursts of magnetic energy being suddenly released when Jupiter and Ganymede’s magnetic field lines connect. However, we are not sure at this stage,” said Dr Grodent.

The team has also mapped the positions of all possible locations of the auroral footprint of Jupiter’s volcanically active moon, Io, with unprecedented accuracy. Io’s footprint consists of a series of spots and a long tail that swirls out about 30 000 km in the direction of the planet’s rotation. The angle of observation in some of the Hubble images has allowed the team to measure the altitude of the tail for the first time with accuracy.

“We found that the tail is at an altitude of approximately 900 km above Jupiter’s cloud tops. Interestingly, although the brightness of the tail decreases as it gets further away from the main spot, the altitude remains relatively constant. We also saw spectral absorption indicating that methane is present, which is unexpected at such a high altitude,” said Dr Bertrand Bonfond.

Io’s footprint arises as a result of the moon’s motion through a doughnut-shaped torus of charged particles, which accumulates along Io’s orbit from material ejected by its volcanoes. In this flow of particles Io acts as a boulder in a stream, generating powerful waves that propagate towards Jupiter's poles. These waves have the special property to project electrons in both directions along the magnetic field lines and when these electrons finally hit Jupiter's atmosphere they create aurora in the form of luminous spots. In addition, Io drags on the plasma, briefly slowing it down, and when the plasma is reaccelerated to normal speed it generates electric currents that form the tail.

The team’s analysis shows that the charged particles that generate Io’s auroral features have a wide range of energies, meaning that some electrons penetrate deep into the atmosphere while others lose most of their energy in the upper atmosphere.


Story Source:

The above story is based on materials provided by Europlanet Media Centre. Note: Materials may be edited for content and length.


Cite This Page:

Europlanet Media Centre. "Ganymede Makes Big Impression On Jupiter's Auroral Lightshows." ScienceDaily. ScienceDaily, 19 September 2009. <www.sciencedaily.com/releases/2009/09/090916223913.htm>.
Europlanet Media Centre. (2009, September 19). Ganymede Makes Big Impression On Jupiter's Auroral Lightshows. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2009/09/090916223913.htm
Europlanet Media Centre. "Ganymede Makes Big Impression On Jupiter's Auroral Lightshows." ScienceDaily. www.sciencedaily.com/releases/2009/09/090916223913.htm (accessed October 23, 2014).

Share This



More Space & Time News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) — Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com
Latin America Launches Communications Satellite

Latin America Launches Communications Satellite

AFP (Oct. 17, 2014) — Argentina launches a home-built satellite, a first for Latin America. It will ride a French-made Ariane 5 rocket into orbit, and will provide cell phone, digital TV, Internet and data services to the lower half of South America. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
This Week @ NASA, October 17, 2014

This Week @ NASA, October 17, 2014

NASA (Oct. 17, 2014) — Power spacewalk, MAVEN’s “First Light”, Hubble finds extremely distant galaxy and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins