Featured Research

from universities, journals, and other organizations

Scientists Make Paralyzed Rats Walk Again After Spinal-cord Injury

Date:
September 21, 2009
Source:
University of California - Los Angeles
Summary:
Researchers have found that drugs, electrical stimulation and regular exercise can enable paralyzed rats to walk and even run again. The finding may hold implications for human rehabilitation after spinal cord injuries.

A combination of drugs, electrical stimulation and regular exercise can enable paralyzed rats to walk and even run again, researchers have discovered.
Credit: iStockphoto/Dmitry Maslov

UCLA researchers have discovered that a combination of drugs, electrical stimulation and regular exercise can enable paralyzed rats to walk and even run again while supporting their full weight on a treadmill.

Related Articles


Published Nov. 20 in the online edition of Nature Neuroscience, the findings suggest that the regeneration of severed nerve fibers is not required for paraplegic rats to learn to walk again. The finding may hold implications for human rehabilitation after spinal cord injuries.

"The spinal cord contains nerve circuits that can generate rhythmic activity without input from the brain to drive the hind leg muscles in a way that resembles walking called 'stepping,'" explained principal investigator Reggie Edgerton, a professor of neurobiology and physiological sciences at the David Geffen School of Medicine at UCLA.

"Previous studies have tried to tap into this circuitry to help victims of spinal cord injury," he added. "While other researchers have elicited similar leg movements in people with complete spinal injuries, they have not achieved full weight-bearing and sustained stepping as we have in our study."

Edgerton's team tested rats with complete spinal injuries that left no voluntary movement in their hind legs. After setting the paralyzed rats on a moving treadmill belt, the scientists administered drugs that act on the neurotransmitter serotonin and applied low levels of electrical currents to the spinal cord below the point of injury.

The combination of stimulation and sensation derived from the rats' limbs moving on a treadmill belt triggered the spinal rhythm-generating circuitry and prompted walking motion in the rats' paralyzed hind legs.

Daily treadmill training over several weeks eventually enabled the rats to regain full weight-bearing walking, including backwards, sideways and at running speed. However, the injury still interrupted the brain's connection to the spinal cord-based rhythmic walking circuitry, leaving the rats unable to walk of their own accord.

Neuro-prosthetic devices may bridge human spinal cord injuries to some extent, however, so activating the spinal cord rhythmic circuitry as the UCLA team did may help in rehabilitation after spinal cord injuries.

The study was funded by the Christopher and Dana Reeve Foundation, Craig Nielsen Foundation, National Institute of Neurological Disorders and Stroke, U.S. Civilian Research and Development Foundation, International Paraplegic Foundation, Swiss National Science Foundation and the Russian Foundation for Basic Research Grants.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Journal Reference:

  1. Grιgoire Courtine, Yury Gerasimenko, Rubia van den Brand, Aileen Yew, Pavel Musienko, Hui Zhong, Bingbing Song, Yan Ao, Ronaldo M Ichiyama, Igor Lavrov, Roland R Roy, Michael V Sofroniew & V Reggie Edgerton. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nature Neuroscience, 2009; DOI: 10.1038/nn.2401

Cite This Page:

University of California - Los Angeles. "Scientists Make Paralyzed Rats Walk Again After Spinal-cord Injury." ScienceDaily. ScienceDaily, 21 September 2009. <www.sciencedaily.com/releases/2009/09/090920204455.htm>.
University of California - Los Angeles. (2009, September 21). Scientists Make Paralyzed Rats Walk Again After Spinal-cord Injury. ScienceDaily. Retrieved February 27, 2015 from www.sciencedaily.com/releases/2009/09/090920204455.htm
University of California - Los Angeles. "Scientists Make Paralyzed Rats Walk Again After Spinal-cord Injury." ScienceDaily. www.sciencedaily.com/releases/2009/09/090920204455.htm (accessed February 27, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, February 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New FDA-Approved Diabetes Medicine Might Save Drugmaker

New FDA-Approved Diabetes Medicine Might Save Drugmaker

Newsy (Feb. 26, 2015) — The U.S. Food and Drug Administration approved new diabetes drug Toujeo on Wednesday, a move that might save French drugmaker Sanofi&apos;s profits. Video provided by Newsy
Powered by NewsLook.com
The Best Foods to Battle Stress

The Best Foods to Battle Stress

Buzz60 (Feb. 26, 2015) — If you&apos;re dealing with anxiety, there are a few foods that can help. Krystin Goodwin (@krystingoodwin) has the best foods to tame stress. Video provided by Buzz60
Powered by NewsLook.com
The 5 Best Tips to Look Younger Now

The 5 Best Tips to Look Younger Now

Buzz60 (Feb. 26, 2015) — Life happens, and we all get older, but forget the pricey anti-aging products and plastic surgery. You can tweak your habits to turn back the hands of time. Krystin Goodwin (@krystingoodwin) has a few simple tips to help you look and feel younger. Video provided by Buzz60
Powered by NewsLook.com
Sleeping Too Much Or Too Little Might Increase Stroke Risk

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Newsy (Feb. 26, 2015) — People who sleep more than eight hours per night are 45 percent more likely to have a stroke, according to a University of Cambridge study. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins