Featured Research

from universities, journals, and other organizations

Math Used As A Tool To Heal Toughest Of Wounds

Date:
September 28, 2009
Source:
Ohio State University
Summary:
Scientists expect a new mathematical model of chronic wound healing could replace intuition with clear guidance on how to test treatment strategies in tackling a major public-health problem. The researchers are the first to publish a mathematical model of an ischemic wound -- a chronic wound that heals slowly or is in danger of never healing because it is fed by an inadequate blood supply.

Scientists expect a new mathematical model of chronic wound healing could replace intuition with clear guidance on how to test treatment strategies in tackling a major public-health problem.

Related Articles


The Ohio State University researchers are the first to publish a mathematical model of an ischemic wound – a chronic wound that heals slowly or is in danger of never healing because it is fed by an inadequate blood supply. Ischemic wounds are a common complication of diabetes, high blood pressure, obesity and other conditions that can be characterized by poor vascular health.

An estimated 6.5 million people in the United States are affected by chronic wounds, and many are at risk of losing limbs or even dying as a result of the most severe of these wounds.

Modeling by mathematicians with expertise in biomedical processes has become increasingly important in the health sciences. The modeling reduces the need for guesswork and time-consuming animal testing traditionally required as researchers pursue prevention, diagnosis and treatment of complex diseases.

“Before you treat any problem successfully, you have to understand it,” said Chandan Sen, professor and vice chair for research in Ohio State’s Department of Surgery and a senior author of the study. “Now that we have this model, we can take the next step to find what factors in the equations can be fine-tuned to the point where the net result is improvement in the ischemic wound outcome.”

The modeling research appears this week in the online early edition of the Proceedings of the National Academy of Sciences.

The mathematical model, to date, simulates both non-ischemic wounds – those typical of wounds in healthy people with good circulation – and ischemic wounds. The current model produced results that generally match pre-clinical expectations: that a normal wound will close in about 13 days, and that 20 days after the development of an ischemic wound, only 25 percent of the wound will be healed.

The model also showed that normal wounds have higher concentrations of proteins and cells expected to be present during the healing process, while ischemic wounds lack oxygen and remain in a prolonged inflammatory phase that interferes with the subsequent cascade of events required to begin wound closure.

Sen, also executive director of the Comprehensive Wound Center at Ohio State, recently published a report about a biological pre-clinical model of an ischemic wound that his lab designed using the skin on a pig’s back. The new mathematical model, a system of partial differential equations, borrowed some data from the animal model, but also includes numerous calculations assigning values to the various cells and chemicals involved in the wound-healing process.

“Wound geometry is complicated because it is three-dimensional,” said Avner Friedman, a senior author of the paper and a Distinguished University Professor at Ohio State. “It would be infeasible to perform our computations within the framework of this geometry. However, we used some mathematical ideas to reduce the problem to a simpler geometry without giving up any of the important aspects of the process.”

It is not just the wound that is three-dimensional, the researchers noted. The complexity of this process is compounded by the fact that the wound-healing model must take into account both the total space occupied by the wound and the time required for the healing process.

Wound healing under normal conditions occurs in four overlapping stages: haemostasis, when platelets make clots to stop bleeding and release chemicals that attract cells to the wound; transient inflammation, when a variety of white blood cells go to work to kill infectious agents and generate growth factors needed for repair; proliferation, when new blood vessels form and when cells produce a bed, called the extracellular matrix, on which the repair occurs; and remodeling, which can take years, as the repaired wound site gains strength.

Sen and colleagues have spent years studying the characteristics of wounds and the intricate details of the healing process. Oxygen is a known essential element to the healing process, and high-pressure oxygen chambers are used to treat some wounds. But for ischemic wounds, oxygen alone isn’t enough.

Scientists know that reduced blood flow to a wound site means that oxygen, important nutrients and circulating cells are not finding their way to the wound to initiate healing. Researchers hope that manipulating mathematical models of these conditions could offer guidance on how to approach this problem without the time and trial-and-error required in biological studies on animals.

“We’re not just considering what type of therapy should be used for these wounds. It is the specifics of when and how you apply it – those are the details that matter,” Sen said. “Mathematical algorithms provide more pointed data that biologists can use to develop hypotheses.”

Developing the biological model was an important start, Sen and Friedman noted. To create an animal model of an ischemic wound, researchers had to strike a careful balance so they reduced blood flow to the wound site without killing all the surrounding tissue by cutting off too much blood. Sen said the 8-millimeter-wide cylindrical puncture wounds rest on what the researchers consider an “island” of skin receiving too little blood to effectively deliver healing cells and chemicals to the wound. Details about the animal model are published in the May issue of the journal Physiological Genomics, a publication of the American Physiological Society.

In developing the mathematical model, Friedman worked with first author Chuan Xue, a postdoctoral researcher in Ohio State’s Mathematical Biosciences Institute, to assign values to variables in the first two stages of wound healing. These included oxygen concentration, concentration of growth factors, density of white blood cells that fight pathogens, density of fibroblasts that perform part of the repair, and density of tips and sprouts of tiny new blood vessels.

The two also modeled the extracellular matrix – the bed on which cells work to close the wound – in a way that allows for the matrix to change the way it functions over time. This part of the model also allowed for simulation of the exertion of pressure – a characteristic of certain types of ulcers that people with diabetes are prone to develop.

Xue noted that the equations were borrowed from the mathematical theory of homogenization by manipulating a single parameter – called parameter alpha – to draw the distinction between ischemic and nonischemic wounds in the model. This is one example, Friedman noted, of simplifying the model without leaving out important biological details.

This work is supported by the National Science Foundation, the National Institutes of Health and the Center for Clinical and Translational Science at Ohio State.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Math Used As A Tool To Heal Toughest Of Wounds." ScienceDaily. ScienceDaily, 28 September 2009. <www.sciencedaily.com/releases/2009/09/090921162144.htm>.
Ohio State University. (2009, September 28). Math Used As A Tool To Heal Toughest Of Wounds. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2009/09/090921162144.htm
Ohio State University. "Math Used As A Tool To Heal Toughest Of Wounds." ScienceDaily. www.sciencedaily.com/releases/2009/09/090921162144.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) — Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) — Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins