Featured Research

from universities, journals, and other organizations

Step Forward For Nanotechnology: Controlled Movement Of Molecules

Date:
October 1, 2009
Source:
American Chemical Society
Summary:
Scientists in the United Kingdom are reporting an advance toward overcoming one of the key challenges in nanotechnology: getting molecules to move quickly in a desired direction without help from outside forces.

In a step forward for nanotechnology, scientists are reporting an advance that allows the controlled movement of individual molecules without help from outside forces. Shown is a model of the atomic structure of a silicon nanocrystal.
Credit: National Science Foundation

Scientists in the United Kingdom are reporting an advance toward overcoming one of the key challenges in nanotechnology: Getting molecules to move quickly in a desired direction without help from outside forces.

Their achievement has broad implications, the scientists say, raising the possibility of coaxing cells to move and grow in specific directions to treat diseases. It also could speed development of some long-awaited nanotech innovations. They include self-healing structures that naturally repair tears in their surface and devices that deliver medication to diseased while sparing healthy tissue.

The study is scheduled for the October issue of ACS Nano, a monthly journal.

Mark Geoghegan and colleagues note long-standing efforts to produce directed, controlled movement of individual molecules in the nano world, where objects are about 1/50,000ththe width of a human hair. The main solutions so far have involved use of expensive, complex machines to move the molecules and they have been only partially successful, the scientists say.

The scientists used a special surface with hydrophobic (water repelling) and hydrophilic (water-attracting) sections. The region between the two sections produced a so-called "energy gradient" which can move tiny objects much like a conveyor belt. In lab studies, the scientists showed that plastic nanoparticles (polymer molecules) moved quickly and in a specific direction on this surface. "This could have implications in many technologies such as coaxing cells to move and grow in given directions, which could have major implications for the treatment of paralysis," the scientists said.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Burgos et al. Directed Single Molecule Diffusion Triggered by Surface Energy Gradients. ACS Nano, 2009; 090923111502009 DOI: 10.1021/nn900991r

Cite This Page:

American Chemical Society. "Step Forward For Nanotechnology: Controlled Movement Of Molecules." ScienceDaily. ScienceDaily, 1 October 2009. <www.sciencedaily.com/releases/2009/09/090930112138.htm>.
American Chemical Society. (2009, October 1). Step Forward For Nanotechnology: Controlled Movement Of Molecules. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2009/09/090930112138.htm
American Chemical Society. "Step Forward For Nanotechnology: Controlled Movement Of Molecules." ScienceDaily. www.sciencedaily.com/releases/2009/09/090930112138.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins