Featured Research

from universities, journals, and other organizations

Putting The Squeeze On Sperm DNA: Streamlined Sperm Offer New Way To Read Histone Code

Date:
October 1, 2009
Source:
European Molecular Biology Laboratory
Summary:
In the quest for speed, olympic swimmers shave themselves or squeeze into high-tech super-suits. In the body, sperm are the only cells that swim and, as speed is crucial to fertility, have developed their own ways to become exceptionally streamlined. Scientists in Europe have been studying the secrets of speedy sperm. Their work shows how a protein only found in developing sperm cells, Brdt, directs tight re-packaging of sperm DNA.

In the center, a structural model determined by X-ray crystallography shows how the two tags (attached to a short section of the histone protein -- all in cyan) fit neatly into the Brdt pocket (purple). In the background image, hypercompaction by Brdt causes relatively diffuse chromatin (stained blue inside the nuclei of two cells on the top left) to compact and clump together (two on the bottom right).
Credit: EMBL/IBS

In the quest for speed, olympic swimmers shave themselves or squeeze into high-tech super-suits. In the body, sperm are the only cells that swim and, as speed is crucial to fertility, have developed their own ways to become exceptionally streamlined. Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg and Grenoble, the Institut de Biologie Structurale (IBS) and the Institut Albert Bonniot, both also in Grenoble, have been studying the secrets of speedy sperm. Their work, published in Nature, shows how a protein only found in developing sperm cells, Brdt, directs tight re-packaging of sperm DNA.

Because it is such a long and unwieldy molecule, our DNA is packaged for convenience into a complex structure called chromatin: long DNA strands are wound around proteins called histones. In sperm, however, this package has become even more compact, reducing the size of the sperm head and making it more hydrodynamic.

The nature of chromatin – how open or compact it is – is intricately regulated. Histones are marked with different chemical tags, often several per histone, that act as a code to direct changes in chromatin structure. Different proteins bind to the tags, the combination of which deciphers the code.

Until now, scientists thought that these proteins bind using one or more modular 'domains', with each domain docking to just one tag. However, this new study reports the discovery of an extra level of sophistication. The researchers studied histone binding of a protein called Brdt, finding that it binds most strongly to a histone with two of a particular tag (in this case, acetyl groups) – and, contrary to expectations, uses just one protein domain to do so. "We were very surprised," explains Christoph Mόller of EMBL. "We looked at the structure and saw that the domain forms a pocket, binding both tags at once."

"In sperm, just before the DNA starts to hypercompact, these tags are added throughout the chromatin in a huge wave," explains Saadi Khochbin of the Institut Albert Bonniot. "If Brdt is absent, the extra compaction doesn't take place, and the sperm head would be less streamlined. Male mice lacking Brdt are infertile."

So is the special way that Brdt binds to histone tags important for its unique compacting ability? "We're not sure, but we can speculate," says Christoph Mόller. "One idea is that histones acquire tags sequentially, and only compact when fully tagged. Brdt binds to the last two tags in this sequence, making Brdt-binding the very last step in the process – the final signal for hypercompaction to begin."

"We re-examined the structures of other chromatin-associate proteins and saw that this tag-binding mechanism is likely to be used by them, too, furthering our understanding of how the histone code is read," adds Carlo Petosa of the IBS.

The researchers believe their work will shed light on potential problems in sperm development and are now looking at the role this protein plays in human male infertility.

 


Story Source:

The above story is based on materials provided by European Molecular Biology Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

European Molecular Biology Laboratory. "Putting The Squeeze On Sperm DNA: Streamlined Sperm Offer New Way To Read Histone Code." ScienceDaily. ScienceDaily, 1 October 2009. <www.sciencedaily.com/releases/2009/09/090930132652.htm>.
European Molecular Biology Laboratory. (2009, October 1). Putting The Squeeze On Sperm DNA: Streamlined Sperm Offer New Way To Read Histone Code. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2009/09/090930132652.htm
European Molecular Biology Laboratory. "Putting The Squeeze On Sperm DNA: Streamlined Sperm Offer New Way To Read Histone Code." ScienceDaily. www.sciencedaily.com/releases/2009/09/090930132652.htm (accessed April 23, 2014).

Share This



More Health & Medicine News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) — Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) — A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) — Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) — NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

    Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins