Featured Research

from universities, journals, and other organizations

Loss Of Tumor Supressor Gene Essential To Transforming Benign Nerve Tumors Into Cancers

Date:
October 13, 2009
Source:
University of California - Los Angeles
Summary:
Researchers have shown for the first time that the loss or decreased expression of the tumor suppressor gene PTEN plays a central role in the malignant transformation of benign nerve tumors called neurofibromas into a malignant and extremely deadly form of sarcoma.

Researchers at UCLA's Jonsson Comprehensive Cancer Center showed for the first time that the loss or decreased expression of the tumor suppressor gene PTEN plays a central role in the malignant transformation of benign nerve tumors called neurofibromas into a malignant and extremely deadly form of sarcoma.

Related Articles


The work, a collaboration between the Institute for Molecular Medicine, the Department of Molecular and Medical Pharmacology and the cancer center's Sarcoma Program, could lead to the development of new therapies that target the cell signaling pathway regulated by PTEN. A novel mouse model of neurofibromatosis type 1 (NF1) developed at UCLA first illustrated the importance of PTEN tumor suppressor in malignant transformation and this finding was validated in human malignant peripheral nerve sheath tumors, the deadly sarcomas.

The study will be published this week in the early online edition of the peer-reviewed journal Proceedings of the National Academy of Sciences.

"The loss of expression of PTEN in the human sarcomas we studied mirrored the loss of PTEN in mice, and we anticipate being able to target this pathway abnormality for the development of new methods of diagnosis and treatment" said Dr. Fritz Eilber, director of the Sarcoma Program and an assistant professor of surgical oncology. "Within the sarcoma world, malignant peripheral nerve sheath tumors are one of the most lethal sub-types, so this is a significant finding and may lead to new and more effective treatments."

NF1 is one of the most common genetically inherited disorders, with an incidence of about 1 in every 2,500 births, said, Dr. Hong Wu, associate director of the molecular medicine institute, a Jonsson Cancer Center researcher and senior author of the study.

"Patients with NF1 have an about 10 percent lifetime risk of developing this lethal sarcoma sub-type," Wu said.

The study also showed that Positron Emission Tomography (PET) scanning with the glucose analogue FDG - both in the mice and in humans - is a highly accurate way to distinguish between the benign tumors and the malignant ones, indicating that this non-invasive imaging technology is valuable in assessing therapeutic response to new treatments.

Wu created the mouse model with two of her graduate students, Caroline Gregorian and Jonathan Nakashima, co-first authors of this paper. It was created by altering two cell signaling pathways that are commonly activated in peripheral and central nervous system cancers, the RAS/RAF/MAPK & PTEN/P13K/AKT pathways, known to regulate cell proliferation, survival and differentiation.

"When we began to generate mouse models to mimic different human cancers, we usually did gene-based analysis to see the relevance of a specific gene in the development of the cancer," Wu said. "But we realize that sometimes targeting the cell signaling pathways that organize and instruct cells to function, both for normal functions of our body and also in abnormal ways in disease, are more important and informative than the individual gene"

The mouse model developed benign neurofibromas, but then progressed to the deadly sub-type of sarcoma. The neurofibromas had half the normal levels of PTEN and the sarcomas had a complete loss of PTEN. Since PTEN is an important factor in suppressing cells from becoming malignant, this could provide an explanation for the sequence of the normal cells transforming into benign neurofibromas that could then transform into cancer.

Wondering if this was also the case in people, Dr. Wu collaborated with Eilber and pathologist Dr. Sarah Dry, director of the Institute of Molecular Medicine's Pathway Pathology Center, and a multidisciplinary team of physician-scientists to determine if people with this sarcoma sub-type also had little or no PTEN.

"This type of collaboration is the hallmark of the work at the Jonsson Cancer Center and molecular medicine institute - translating discoveries in a basic science lab into discoveries in patients," Wu said.

Currently, there are no effective treatments to prevent the benign NF1 tumors from transforming into cancer. The genetically engineered mouse model will be used to screen drugs that may be able to target the signaling pathway regulated by PTEN, to block signals that instruct the cells to change from a benign state to a malignant one, providing treatment options for patients with the deadly form of cancer.

"I think these findings will help us provide a better diagnosis that can determine if the neurofibroma is becoming a malignant tumor or not," Eilber said. "But more importantly, the loss of the PTEN and its associated signaling pathways gives us targets for therapy and it may lay the foundation for treatment in other sarcomas as well."

Also involved in the research were Dr. Paul Mischel, Dr. Simin Liu, Dr. Phioanh Leia Nghiemphu, Dr. Greg Lawson, Dr. Michael Sofroniew and Dr. Michael Phelps, director of the molecular medicine institute and creator of the PET scanner

The study was funded by the United States Department of Health and Human Services, the National Cancer Institute, the National Institutes of Health, UCLA's Jonsson Comprehensive Cancer Center, the American Cancer Society, the Brain Tumor Society, the Henry Singleton Brain Cancer Research Program and the James S. McDonnell Foundation.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Los Angeles. "Loss Of Tumor Supressor Gene Essential To Transforming Benign Nerve Tumors Into Cancers." ScienceDaily. ScienceDaily, 13 October 2009. <www.sciencedaily.com/releases/2009/10/091013105828.htm>.
University of California - Los Angeles. (2009, October 13). Loss Of Tumor Supressor Gene Essential To Transforming Benign Nerve Tumors Into Cancers. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2009/10/091013105828.htm
University of California - Los Angeles. "Loss Of Tumor Supressor Gene Essential To Transforming Benign Nerve Tumors Into Cancers." ScienceDaily. www.sciencedaily.com/releases/2009/10/091013105828.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins