Featured Research

from universities, journals, and other organizations

Major advance in organic solar cells

Date:
November 18, 2009
Source:
University of California - Santa Barbara
Summary:
Scientists have announced a major advance in the synthesis of organic polymers for plastic solar cells. Gains in speed, quality and current over conventional production techniques hold promise for both research and commercial production.

Postdoctoral student Greg Welch removing a sample from the microwave reactor.
Credit: Image courtesy of Tony Rairden / College of Engineering, University of California - Santa Barbara

Professor Guillermo Bazan and a team of postgraduate researchers at UC Santa Barbara's Center for Polymers and Organic Solids (CPOS) have announced a major advance in the synthesis of organic polymers for plastic solar cells.

Bazan's team reduced reaction time by 99%, from 48 hours to 30 minutes, and increased average molecular weight of the polymers by a factor of more than 3.

The reduced reaction time effectively cuts production time for the organic polymers by nearly 50%, since reaction time and purification time are approximately equal in the production process, in both laboratory and commercial environments.

The higher molecular weight of the polymers, reflecting the creation of longer chains of the polymers, has a major benefit in increasing current density in plastic solar cells by as much as a factor of more than four. Over polymer batches with varying average molecular weights, produced using varying combinations of the elements of the new methodology, the increase in current density was found to be approximately proportional to the increase in average molecular weight.

The methodology, detailed in a recent Nature Chemistry paper, "will greatly accelerate research in this area," stated Bazan, "by making possible the rapid production of different batches of polymers for evaluation." He further noted, "We plan to take advantage of this approach both to generate new materials that will increase solar cell efficiencies and operational lifetimes, and to reevaluate previously-considered polymer structures that should exhibit much higher performance than they showed initially."

To make these gains, the team:

  • replaced conventional thermal heating with microwave heating,
  • modified reactant concentrations, and
  • varied the ratio of reactants by only 5% from the nominal 1:1 stoichiometric ratio normally employed in polymerization reactions.

Mike McGehee, Director of Stanford's Center for Advanced Molecular Photovoltaics, hailed Bazan's work, commenting, "Many synthetic chemists around the world are making copolymers with alternating donor and acceptors to attain low bandgaps. Most of them are having trouble attaining adequate molecular weight, so this new synthetic method that creates longer polymer chains is a real breakthrough. The reduction in synthesis time should also make it easier to optimize the chemical structure as the research moves forward and will ultimately reduce the manufacturing cost."

Bazan is a Professor of Chemistry and of Materials at UC Santa Barbara, and is co-director of CPOS and a faculty member at the NSF-funded Materials Research Laboratory.


Story Source:

The above story is based on materials provided by University of California - Santa Barbara. Note: Materials may be edited for content and length.


Journal Reference:

  1. Robert C. Coffin, Jeff Peet, James Rogers & Guillermo C. Bazan. Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. Nature Chemistry, 2009; DOI: 10.1038/nchem.403

Cite This Page:

University of California - Santa Barbara. "Major advance in organic solar cells." ScienceDaily. ScienceDaily, 18 November 2009. <www.sciencedaily.com/releases/2009/10/091019123011.htm>.
University of California - Santa Barbara. (2009, November 18). Major advance in organic solar cells. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2009/10/091019123011.htm
University of California - Santa Barbara. "Major advance in organic solar cells." ScienceDaily. www.sciencedaily.com/releases/2009/10/091019123011.htm (accessed July 28, 2014).

Share This




More Earth & Climate News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Phoenix Thunderstorm Creates Giant Wall of Dust

Phoenix Thunderstorm Creates Giant Wall of Dust

Reuters - US Online Video (July 26, 2014) A giant wall of dust slowly moves north over the Phoenix area after a summer monsoon thunderstorm. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Rare Lemur Among Baby Animals Debuted at Cleveland Zoo

Rare Lemur Among Baby Animals Debuted at Cleveland Zoo

Reuters - US Online Video (July 26, 2014) A rare baby Lemur is among several baby animals getting their public debut at a Cleveland zoo. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins