Featured Research

from universities, journals, and other organizations

0.2 Second Test For Explosive Liquids

Date:
October 21, 2009
Source:
Institute of Physics
Summary:
A new form of spectroscopy, a scientific method that uses electromagnetic radiation to identify materials, and a novel nanoelectronic device to detect signals, can identify explosive liquids, or liquid components for the fabrication of explosives, in usual plastic bottles almost instantly.

Since a failed terrorist attack in 2006, plane passengers have not been able to carry bottles of liquid through security at airports, leaving some parched at the airport and others having expensive toiletries confiscated, but work by a group of physicists in Germany is paving the way to eliminate this necessary nuisance.

Research published today, Tuesday, 20 October, in IOP Publishing's Superconductor Science and Technology explains how a new form of spectroscopy, a scientific method that uses electromagnetic radiation to identify materials, and a novel nanoelectronic device to detect signals, can identify explosive liquids, or liquid components for the fabrication of explosives, in usual plastic bottles almost instantly.

Discussing the different molecular signatures, or atomic make-up, of simple liquids such as water, ethanol and acetone (a flammable liquid), the researchers from Forschungszentrum Jόlich, an inter-disciplinary research centre situated between Aachen and Cologne in Germany, explain the need to extend the frequency range of spectral analysis to increase the reliability of liquid explosive detection.

While the idea of using electromagnetic radiation to inspect the properties of liquids is already thought a viable route to detecting explosive liquids, previous devices, working at single fixed frequencies within a small frequency range, cannot unambiguously distinguish mixtures of different liquids containing dangerous components which can be used as an explosive.

The researchers from Jόlich have suggested a fast and reliable way to increase the range of frequencies that their spectrometer can analyse, thereby verifying the molecular signature of the liquid and creating a much more detailed 'thumbprint' that can be checked against the range of possibly dangerous liquids available to terrorists.

The researchers' new method of spectrometry is called Hilbert spectroscopy. It works over a wider range of frequencies, from a few gigahertz to a few terahertz. With the incorporation of a nanoscale electronic device, a Josephson junction, the researchers have undertaken practical detection experiments which directly transform the electromagnetic spectrum received by the spectrometer into an electrical signal which warns of suspicious fluids.

As the researchers write, "Our first experiments showed that with simple measurements at four frequencies ranging from microwave to terahertz we are able to perform fast and reliable identification of various widespread liquids, such as water, ethanol, propanol and acetone, placed in a plastic container. We have made and continue to make significant steps towards a practical device."


Story Source:

The above story is based on materials provided by Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. M Lyatti et al. Liquid identification by Hilbert spectroscopy. Supercond. Sci. Technol., October 20, 2009; 22 114005 (8pp) DOI: 10.1088/0953-2048/22/11/114005

Cite This Page:

Institute of Physics. "0.2 Second Test For Explosive Liquids." ScienceDaily. ScienceDaily, 21 October 2009. <www.sciencedaily.com/releases/2009/10/091020111431.htm>.
Institute of Physics. (2009, October 21). 0.2 Second Test For Explosive Liquids. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2009/10/091020111431.htm
Institute of Physics. "0.2 Second Test For Explosive Liquids." ScienceDaily. www.sciencedaily.com/releases/2009/10/091020111431.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) — Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) — Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) — A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins