Featured Research

from universities, journals, and other organizations

Discovery Of A Novel Cell Adhesion Mechanism

Date:
October 29, 2009
Source:
IBEC - Institute for Bioengineering of Catalonia
Summary:
In a process essential to the immune system's response to infection, dendritic cells responsible for identifying pathogens communicate with the T-cells that destroy the infectious agents. To achieve this, the dendritic cells must be correctly activated and migrate to the lymph nodes where they must adhere firmly to T-cells.

LFA-1 integrin (red) GPI proteins (green) at the membrane of a cell of the immune system.
Credit: Image courtesy of IBEC - Institute for Bioengineering of Catalonia

In a process essential to the immune system's response to infection, dendritic cells responsible for identifying pathogens communicate with the T-cells that destroy the infectious agents. To achieve this, the dendritic cells must be correctly activated and migrate to the lymph nodes where they must adhere firmly to T-cells.

These processes are, to a large degree, regulated by the integrin lymphocyte-associated antigen-1 (LFA-1). Earlier studies reported that stable adhesion involved lipid rafts that organize assemblies of cell membrane proteins, including glycosylphosphatidylinositol (GPI) anchored proteins. There has, however, been considerable debate about the existence of these rafts because, owing to their very small size (on the nanometric scale), they could not be observed and their function in the adhesion process was poorly understood.

A team of researchers in the BioNanoPhotonics group led by Marνa Garcνa-Parajo in the Institute of Bioengineering of Catalonia (IBEC) has managed to observe these lipid rafts and has discovered that in the process of cell adhesion they are organized around GPI-anchored proteins and close to LFA-1. The proteins activate LFA-1 and assist throughout the whole process of immune cell adhesion and migration.

These results were obtained using a superresolution optical technique called near-field scanning optical microscopy (NSOM), which makes it possible to work at the nanoscale level. The IBEC team adapted the technique to work with biological samples, cells, and biological processes in their natural state. The results have been published in Proceedings of the National Academy of Sciences.

The mechanisms controlling protein organization and cell-cell interaction in the immune system have implications for a large number of autoimmune diseases and allergies, as well as for the rapid transmission of the human immunodeficiency virus, all phenomena that may be caused by defective cell adhesion. Discoveries made in this area -- including those of the IBEC group -- will broaden the possibilities for the development of new treatments for these diseases.

These findings and the technology now available also open up the possibility of exploring other areas of cell biology with nanoscale imaging because the organization of proteins in the cell membrane is a general mechanism in the rapid response of a cell to its environment. Specifically, further research could shed light on the processes involved in the adhesion of other integrins, which also involves interaction with lipid rafts.


Story Source:

The above story is based on materials provided by IBEC - Institute for Bioengineering of Catalonia. Note: Materials may be edited for content and length.


Journal Reference:

  1. van Zanten et al. Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion. Proceedings of the National Academy of Sciences, 2009; 106 (44): 18557 DOI: 10.1073/pnas.0905217106

Cite This Page:

IBEC - Institute for Bioengineering of Catalonia. "Discovery Of A Novel Cell Adhesion Mechanism." ScienceDaily. ScienceDaily, 29 October 2009. <www.sciencedaily.com/releases/2009/10/091029161358.htm>.
IBEC - Institute for Bioengineering of Catalonia. (2009, October 29). Discovery Of A Novel Cell Adhesion Mechanism. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2009/10/091029161358.htm
IBEC - Institute for Bioengineering of Catalonia. "Discovery Of A Novel Cell Adhesion Mechanism." ScienceDaily. www.sciencedaily.com/releases/2009/10/091029161358.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) — The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) — A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) — British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com
Carpenter's Injury Leads To Hundreds Of 3-D-Printed Hands

Carpenter's Injury Leads To Hundreds Of 3-D-Printed Hands

Newsy (Apr. 14, 2014) — Richard van As lost all fingers on his right hand in a woodworking accident. Now, he's used the incident to create a prosthetic to help hundreds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins