Featured Research

from universities, journals, and other organizations

This Is Your Brain On Fatty Acids: Scientists Discover Lipid May Be Vital To Learning

Date:
November 2, 2009
Source:
Johns Hopkins Medical Institutions
Summary:
Saturated fats have a deservedly bad reputation, but scientists have discovered that a sticky lipid occurring naturally at high levels in the brain may help us memorize grandma's recipe for cinnamon buns, as well as recall how, decades ago, she served them up steaming from the oven.

Saturated fats have a deservedly bad reputation, but Johns Hopkins scientists have discovered that a sticky lipid occurring naturally at high levels in the brain may help us memorize grandma's recipe for cinnamon buns, as well as recall how, decades ago, she served them up steaming from the oven.

The Hopkins team, reporting Oct. 29 in Neuron, reveals how palmitate, a fatty acid, marks certain brain proteins -- NMDA receptors -- that need to be activated for long-term memory and learning to take place. The fatty substance directs the receptors to specific locations in the outer membrane of brain cells, which continually strengthen and weaken their connections with each other, sculpting and resculpting new memory circuits.

Moreover, the researchers report, this fatty modification is a reversible process, with some sort of on-off switch, offering possibilities for manipulating it to enhance or even, perhaps, erase memory.

"Before now, no one knew that NMDA receptors change in response to the addition of palmitate," says Richard Huganir, Ph.D., professor and director of the Solomon H. Snyder Department of Neuroscience at Johns Hopkins.

Scientists have known that a brain signaling chemical called glutamate normally activates NMDA receptors, allowing two neurons to communicate with one another. However, they were less certain what allowed this receptor to assemble properly, or what caused it to make its way to the synapse, the specialized part of nerve cells where communication takes place.

The discovery emerged from work with live neurons in a dish, to which the scientists first fed radioactive palmitate, then separated out the NMDA receptors. By tracking radioactivity on X-ray film, they were able to determine that the fat had attached to the NMDA receptors.

Next, the scientists put both normal and altered NMDA receptors into non-brain cells that don't normally manufacture their own NMDA receptors. By tracking the radioactive fat, they were able to determine where on the NMDA receptor the fat had attached.

Results showed that the NMDA receptor undergoes "dual palmitoylation," in two different regions, each of which plays a distinct role in controlling the fate of the receptor in neurons. When the fat attaches to the first region, it stabilizes the receptor on the surface of neurons. When the fat attaches to the second region, the receptors accumulate inside neurons, perhaps awaiting a signal to send them to synapses. The researchers suspect that this could be part of a quality control measure, assuring that all the Lego-like protein subunits of the receptor are put together properly.

"It is rapidly becoming clear that palmitate regulates not only NMDA receptors, but also other brain proteins at work during signaling across synapses," says Gareth Thomas, Ph.D., a Howard Hughes Medical Institute postdoctoral fellow at Hopkins.

The researchers suspect that if palmitoylation fails, the result would be learning and memory impairment because if NMDA receptors don't make their way to the synapses -- the specialized contact points between cells across which chemical messages flow -- then communication between neurons is compromised.

"This new modification of the NMDA receptor deepens our molecular understanding of how synapses are regulated and how memories might be formed. It also reveals new potential drug targets, such as the enzymes that add or remove the palmitate," Huganir says. "If we could shift the balance of the palmitoylation, then perhaps we could affect and enhance learning and memory."

This study was supported by research grants from the National Institute of Mental Health and the Howard Hughes Medical Institute.

Authors on the paper are Takashi Hayashi, Gareth Thomas and Richard Huganir of Johns Hopkins.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "This Is Your Brain On Fatty Acids: Scientists Discover Lipid May Be Vital To Learning." ScienceDaily. ScienceDaily, 2 November 2009. <www.sciencedaily.com/releases/2009/10/091031002321.htm>.
Johns Hopkins Medical Institutions. (2009, November 2). This Is Your Brain On Fatty Acids: Scientists Discover Lipid May Be Vital To Learning. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/10/091031002321.htm
Johns Hopkins Medical Institutions. "This Is Your Brain On Fatty Acids: Scientists Discover Lipid May Be Vital To Learning." ScienceDaily. www.sciencedaily.com/releases/2009/10/091031002321.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins