Featured Research

from universities, journals, and other organizations

Spinal Cord Regeneration Enabled By Stabilizing, Improving Delivery Of Scar-degrading Enzyme

Date:
November 5, 2009
Source:
Georgia Institute of Technology Research News
Summary:
Researchers have improved an enzyme that degrades dense scar tissue that forms when the central nervous system is damaged -- and developed a new system to deliver it, ultimately enabling spinal cord regeneration.

Image showing the extent of new nerves (green) that regenerated after treatment with the enzyme.
Credit: Image courtesy of Ravi Bellamkonda

Researchers have developed an improved version of an enzyme that degrades the dense scar tissue that forms when the central nervous system is damaged. By digesting the tissue that blocks re-growth of damaged nerves, the improved enzyme -- and new system for delivering it -- could facilitate recovery from serious central nervous system injuries.

Related Articles


The enzyme, chrondroitinase ABC (chABC), must be supplied to the damaged area for at least two weeks following injury to fully degrade scar tissue. But the enzyme functions poorly at body temperature and must therefore be repeatedly injected or infused into the body.

In a paper published November 2 in the early edition of the journal Proceedings of the National Academy of Sciences, researchers describe how they eliminated the thermal sensitivity of chABC and developed a delivery system that allowed the enzyme to be active for weeks without implanted catheters and pumps. This work was supported by the National Institutes of Health.

"This research has made digesting scar clinically viable by obviating the need for continuous injection of chABC by thermally stabilizing the enzyme and harnessing bioengineered drug delivery systems," said the paper's lead author Ravi Bellamkonda, a professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

At physiological body temperature, chABC enzyme loses half of its enzymatic activity within one hour and their remaining functionality within three to five days. To thermostabilize the enzymes, Bellamkonda, Emory University cell biology associate professor Robert McKeon and Georgia Tech graduate student Hyun-Jung Lee mixed the enzyme with the sugar trehalose. The result -- the enzyme's activity was stabilized at internal body temperature for up to four weeks during in vitro tests.

The researchers then used a lipid microtube-hydrogel scaffold system to deliver the thermostabilized enzymes into animals via a single injection. The scaffold provided sustained delivery of the enzyme for two weeks, with the microtubes enabling slow release and the hydrogel localizing the tubes to the lesion site. This delivery system also allowed the enzyme to diffuse deeper into the tissue than did catheter delivery.

In animal studies, the enzyme's ability to digest the scar was retained for two weeks post-injury and scar remained significantly degraded at the lesion site for at least six weeks. The researchers also observed enhanced axonal sprouting and recovery of nerve function at the injury site when the thermostabilized enzyme was delivered.

The delivery system also enabled the combination of therapies. Animals treated with thermostabilized chABC in combination with sustained delivery of neurotrophin-3 -- a protein growth factor that helps to support the survival and differentiation of neurons -- showed significant improvement in locomotor function and enhanced growth of sensory axons and sprouting of fibers for the neurotransmitter serotonin.

"These results bring us a step closer to repairing spinal cord injuries, which require multiple steps including minimizing the extent of secondary injury, bridging the lesion, overcoming inhibition due to scar, and stimulating nerve growth," added Bellamkonda, who is also deputy director of research for GTEC, a regenerative medicine center based at Georgia Tech and Emory University, and a Georgia Cancer Coalition Distinguished Cancer Scholar.

This research was funded by Award No. R01 NS043486 from the National Institute of Neurological Disorders and Stroke (NINDS) of the National Institutes of Health (NIH). The content is solely the responsibility of the principal investigator and does not necessarily represent the official view of the NINDS or the NIH.


Story Source:

The above story is based on materials provided by Georgia Institute of Technology Research News. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute of Technology Research News. "Spinal Cord Regeneration Enabled By Stabilizing, Improving Delivery Of Scar-degrading Enzyme." ScienceDaily. ScienceDaily, 5 November 2009. <www.sciencedaily.com/releases/2009/11/091102171217.htm>.
Georgia Institute of Technology Research News. (2009, November 5). Spinal Cord Regeneration Enabled By Stabilizing, Improving Delivery Of Scar-degrading Enzyme. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2009/11/091102171217.htm
Georgia Institute of Technology Research News. "Spinal Cord Regeneration Enabled By Stabilizing, Improving Delivery Of Scar-degrading Enzyme." ScienceDaily. www.sciencedaily.com/releases/2009/11/091102171217.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins