Featured Research

from universities, journals, and other organizations

Experimental Agent Reduces Breast Cancer Metastasis To Bone

Date:
November 5, 2009
Source:
Tufts University, Health Sciences
Summary:
New research finds that a protein called ROCK is over-expressed in metastatic breast cancer and that inhibiting ROCK significantly reduces metastasis to bone. The in vitro and in vivo study suggests that ROCK may be a drug therapy target for breast cancer metastasis.

Researchers have reduced breast cancer metastasis to bone using an experimental agent to inhibit ROCK, a protein that was found to be over-expressed in metastatic breast cancer.

In a study in mice, the team of researchers from Tufts University School of Medicine, the Sackler School of Graduate Biomedical Sciences at Tufts, and Tufts Medical Center report that inhibiting ROCK, or Rho-associated kinase, in the earliest stages of breast cancer decreased metastatic tumor mass in bone by 77 percent and overall frequency of metastasis by 36 percent. The results suggest that ROCK may be a target for new drug therapies to reduce breast cancer metastasis.

"While the primary tumor causes significant illness and requires treatment, metastasis accounts for over 90 percent of breast cancer-related deaths. There are no treatments to eradicate metastasis. Establishing ROCK's role in the spread of breast cancer and identifying agents to inhibit ROCK brings us one step closer to an approach that might reduce metastasis in the future," said senior author Michael Rosenblatt, MD, professor of physiology and medicine at Tufts University School of Medicine and member of the cellular and molecular physiology program faculty at the Sackler School of Graduate Biomedical Sciences at Tufts. Rosenblatt is also dean of Tufts University School of Medicine.

"We also found that using shRNA -- short hairpin RNA -- to knock down ROCK expression slowed metastasis. In order for cancer cells to migrate, an extensive transportation apparatus is required. ROCK directs the formation of this apparatus, but use of the ROCK inhibitor as well as shRNA rendered the cells' transportation mechanism ineffective, significantly reducing breast cancer metastasis to bone," said first author Sijin Liu, PhD, research instructor and member of the Rosenblatt Laboratory at Tufts.

"This study also revealed that a specific microRNA cluster, 17 through 92, is associated with ROCK expression and breast cancer metastasis. The microRNA cluster responded to ROCK inhibition, which provides insight into the mechanism driving metastasis and is a finding that will be of particular interest to researchers focused on the role of microRNAs in gene expression," continued Liu.

Rosenblatt, Liu, and colleagues used luminescent imaging to observe ROCK's effect on breast cancer metastasis. The researchers found that inserting high levels of ROCK in non-metastatic cancer cells caused the cells to metastasize to several secondary sites, while cells with no ROCK exposure remained localized. The researchers then used an experimental agent (Y27632) or shRNA to reduce ROCK activity in seven mice with metastatic tumors, finding a significant decrease in metastasis to bone compared to six untreated mice.

Breast cancer is the second leading fatal cancer in women, and affects just under one in eight women in the United States. Bone is the most common site of breast cancer metastasis, affected three times more often than the lungs or liver.

The study, published online in advance of print, will appear in the November 15 issue of Cancer Research. The results were also presented at the Frontiers in Basic Cancer Research conference, held by the American Association for Cancer Research in October. The study is supported by a grant from the Susan G. Komen Breast Cancer Foundation.

Coauthors include Robert H. Goldstein, a student in the MD/PhD program at Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences; and Ellen M. Scepansky, MD, hematology and oncology fellow at Tufts Medical Center and clinical instructor in the department of medicine at Tufts University School of Medicine.


Story Source:

The above story is based on materials provided by Tufts University, Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Liu S, Goldstein RH, Scepansky EM, and Rosenblatt M. Inhibition of Rho-Associated Kinase Signaling Prevents Breast Cancer Metastasis to Human Bone. Cancer Research, 2009; DOI: 10.1158/0008-5472.CAN-09-1541

Cite This Page:

Tufts University, Health Sciences. "Experimental Agent Reduces Breast Cancer Metastasis To Bone." ScienceDaily. ScienceDaily, 5 November 2009. <www.sciencedaily.com/releases/2009/11/091103144820.htm>.
Tufts University, Health Sciences. (2009, November 5). Experimental Agent Reduces Breast Cancer Metastasis To Bone. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2009/11/091103144820.htm
Tufts University, Health Sciences. "Experimental Agent Reduces Breast Cancer Metastasis To Bone." ScienceDaily. www.sciencedaily.com/releases/2009/11/091103144820.htm (accessed August 22, 2014).

Share This




More Health & Medicine News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com
Lost Brain Cells To Blame For Sleep Problems Among Seniors

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Newsy (Aug. 21, 2014) According to a new study, elderly people might have trouble sleeping because of the loss of a certain group of neurons in the brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins