Featured Research

from universities, journals, and other organizations

Energy-saving powder may allow exploitation of unused reserves of natural gas

Date:
November 22, 2009
Source:
Max-Planck-Gesellschaft
Summary:
Chemists are using a simple method to convert methane to methanol -- something that has the potential to exploit previously unused reserves of natural gas.

It is currently estimated that natural gas resources will be exhausted in 130 years; however, those reserves where extraction is cost-effective will only flow for another 60 years or so. Scientists at the Max Planck Institute for Coal Research and at the Max Planck Institute of Colloids and Interfaces might be helping to make it worthwhile to tap into previously unused resources. They have developed a catalyst that converts methane to methanol in a simple and efficient process.

Related Articles


Methanol can be transported from locations where it is not economical to build a pipeline.

It is not cost-effective to lay pipelines to remote or small natural gas fields; nor is it worthwhile accessing the methane in coal seams or in gas sand, or which is burned off as a by-product of oil production, although the methane burned off throughout the world could more than satisfy Germany's requirement for natural gas. It is also too expensive to liquefy the gas and transport it on trains or in tankers -- and even chemistry has so far been unable to offer a solution. Although there are chemical ways to convert methane to methanol, which is easy to transport and which is suitable as a raw material for the chemical industry, "the processes commonly used up to now for producing diesel fuel -- steam reforming followed by methanol synthesis or Fischer-Tropsch synthesis -- are not economical," says Ferdi Schüth, Director at the Max Planck Institute for Coal Research in Mülheim an der Ruhr. He and his colleagues have been working with Markus Antonietti and his team at the Max Planck Institute of Colloids and Interfaces in Potsdam to develop a catalyst that might change all this.

The catalyst consists of a nitrogenous material, a covalent, triazine-based network (CTF) synthesized by the chemists in Potsdam. "This solid is so porous that the surface of a gram is approximately equivalent in size to a fifth of a football field," says Markus Antonietti. The researchers in Mülheim insert platinum atoms into the voluminous lattice of the CTF. Thanks to the large surface area, the catalyst oxidizes the methane efficiently to methanol, as it offers the methane a large area in which to react when the chemists immerse it in oxidizing sulphuric acid, force methane into the acid and heat the mixture to 215° Celsius under pressure. Methanol is created from more than three-quarters of the converted gas.

A catalyst manufactured by the American chemist Roy Periana more than ten years ago from platinum and simple nitrogenous bipyrimidine also effectively creates methanol, but only supports the reaction in a soluble form. This means that the catalyst -- which chemists refer to as a homogenous catalyst -- subsequently needs to be separated off in a laborious and somewhat wasteful process. "It's much easier with our heterogeneous catalyst," says Ferdi Schüth. The chemists in Mülheim filter out the powdery platinum and CTF catalyst, and then separate the acid and methanol in a simple distillation.

The catalyst developed by the Max Planck chemists probably uses the same mechanism as the Periana catalyst and was indeed inspired by it. "When I saw the structure of CTF, I noticed the elements which correspond to its bipyrimidine ligands," says Schüth. "That's when I had the idea of manufacturing the solid catalyst."

To get closer to a large-scale technical application, he and his colleagues are now attempting to enable the process to work with reactants in gaseous rather than soluble form. "We are also looking for similar, even more effective catalysts," says Schüth. "We have already found more efficient homogenous catalysts with ligands other than bipyrmidine." They are now using these as a model for simple, easy to manage catalysts like the CTF and platinum powder.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. Palkovits et al. Solid Catalysts for the Selective Low-Temperature Oxidation of Methane to Methanol. Angewandte Chemie International Edition, 2009; 48 (37): 6909 DOI: 10.1002/anie.200902009

Cite This Page:

Max-Planck-Gesellschaft. "Energy-saving powder may allow exploitation of unused reserves of natural gas." ScienceDaily. ScienceDaily, 22 November 2009. <www.sciencedaily.com/releases/2009/11/091111123610.htm>.
Max-Planck-Gesellschaft. (2009, November 22). Energy-saving powder may allow exploitation of unused reserves of natural gas. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/11/091111123610.htm
Max-Planck-Gesellschaft. "Energy-saving powder may allow exploitation of unused reserves of natural gas." ScienceDaily. www.sciencedaily.com/releases/2009/11/091111123610.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) — Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) — A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins