Featured Research

from universities, journals, and other organizations

Working Together To Design Robust Silicon Chips

Date:
November 12, 2009
Source:
EUREKA
Summary:
A new project has resulted in much improved design methods for high performance silicon chips. Leading semiconductor chipmakers, electronic circuit developers and design automation equipment manufacturers worked closely together to tackle a series of problems much earlier in the design phase and so enhance integrated circuit design approaches.

Designers of high-speed silicon chips have often had to compromise on performance levels for their integrated circuit designs because of physical weaknesses appearing during design verification or even in production. This has necessitated building redundancy into chip designs to allow for the imperfect environments of production and use that vary from the ideal of the design workbench. Issues such as voltage variations, thermal heat effects, electrostatic discharge, internal radiation and crosstalk can all downgrade the performance and reliability of a perfect design.

With circuit detail resolutions now descending to 65 and 45 nm, such problems are becoming ever more acute. All too often, chip designs pass traditional checks, yet fail when manufactured in silicon, forcing design teams to turn to costly diagnostic and repair methods or -- worse still -- throw the chip away.

Three major European semiconductor manufacturers -- Infineon, NXP Semiconductors and STMicroelectronics -- got together in ROBIN to define and deal with such problems early in the design phase, thus avoiding problems further down the development flow or in the production phase. They were joined by a laboratory with strong expertise in quantum physics and four electronic design automation (EDA) companies.

Favouring first silicon success

"Our most important target was to favour 'first silicon success' without affecting the performance of the circuits," explains project leader Philippe Garcin of STMicroelectronics, which started ROBIN. The other partners joined either because they had similar problems as in the case of Infineon and NXP, new solutions they intended to put on the open market in the case of the EDA companies or long-term solutions in mind as far as the research organisation was concerned.

The chipmaking partners formalised the problems, specified software tools, models and design flows with strong interoperability, and proposed complementary test cases. Together with the EDA partners, they built new solutions that are now available for exploitation in line with these specifications.

A key objective was to optimise the design approach to both existing 130 and 90 nm and future 65 and 45 nm technologies by defining the most efficient trade-offs between circuit robustness in terms of yield and reliability, and efficient use of technology affecting performance, density and power consumption. The challenge was to maintain or enhance existing performance levels, while improving design reliability and robustness.

Taking a bottom-up approach

"We took a bottom-up approach, from technology to chip level and then to system-in-package (SIP) level," says Garcin. "We examined a wide range of issues, from power and substrate effects through signal interference to manufacturing cost."

While applications require smaller voltages and higher frequencies, miniaturisation adds new risks of voltage distortions. To reduce design iterations and avoid unreliability or failures, ROBIN aimed to prevent these effects very early in the design flow. The project addressed signal corruption in power distribution and on the substrate, and took into account the effects of interconnect crosstalk and natural radiations.

The MEDEA+ project attained its goal of obtaining the best from available and emerging technologies by defining optimal trade-offs between circuit robustness in terms of yield and reliability, and efficient use of technology -- performance, density and power consumption -- down to 45 nm. For example, on inter-block couplings, ROBIN allowed a decrease of simulation time by factor of four in very critical radio-frequency circuits.

As support for the microelectronics industry, the ROBIN partners developed the basic concept for a unified chip/package data exchange (CPX) environment. The two industry standards -- ESDA and JEDEC -- used to measure electrostatic discharges were both evaluated and discussed. In the course of the project, the benefits of ROBIN were demonstrated in automotive, telecommunications and multimedia applications. Co-operation was highly successful within the different work groups.


Story Source:

The above story is based on materials provided by EUREKA. Note: Materials may be edited for content and length.


Cite This Page:

EUREKA. "Working Together To Design Robust Silicon Chips." ScienceDaily. ScienceDaily, 12 November 2009. <www.sciencedaily.com/releases/2009/11/091112103423.htm>.
EUREKA. (2009, November 12). Working Together To Design Robust Silicon Chips. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2009/11/091112103423.htm
EUREKA. "Working Together To Design Robust Silicon Chips." ScienceDaily. www.sciencedaily.com/releases/2009/11/091112103423.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins