Featured Research

from universities, journals, and other organizations

Invisibility visualized: New software for rendering cloaked objects

Date:
November 13, 2009
Source:
Optical Society of America
Summary:
Scientists and curiosity seekers who want to know what a partially or completely cloaked object would look like in real life can now get their wish -- virtually. Scientists have created a new visualization tool that can render a room containing such an object, showing the visual effects of such a cloaking mechanism and its imperfections.

Refractive index profile and corresponding ray-tracing image of the simplified cloak.
Credit: J.C. Halimeh, T. Ergin, J. Mueller, N. Stenger, and M. Wegener. Photorealistic images of carpet cloaks. Optics Express, 2009; 17 (22): 19328 DOI: 10.1364/OE.17.019328

Scientists and curiosity seekers who want to know what a partially or completely cloaked object would look like in real life can now get their wish -- virtually. A team of researchers at the Karlsruhe Institute of Technology in Germany has created a new visualization tool that can render a room containing such an object, showing the visual effects of such a cloaking mechanism and its imperfections.

To illustrate their new tool, the researchers have published an article in the latest issue of Optics Express, the Optical Society's (OSA) open-access journal, with a series of full-color images.

These images show a museum nave with a large bump in the reflecting floor covered by an invisibility device known as the carpet cloak. They reveal that even as an invisibility cloak hides the effect of the bump, the cloak itself is apparent due to surface reflections and imperfections. The researchers call this the "ostrich effect" -- in reference to the bird's mythic penchant for partial invisibility.

"It's important to visualize how an optical device works," explains Jad C. Halimeh, a Master of Science graduate of the Karlsruhe Institute of Technology in Germany who wrote and tested the new software as part of his Master's thesis.

The software, which is not yet commercially available, is a visualization tool designed specifically to handle complex media, such as metamaterial optical cloaks. Metamaterials are man-made structured composite materials that exhibit optical properties not found in nature. By tailoring these optical properties, these media can guide light so that cloaking and other optical effects can be achieved.

In 2006, scientists at Duke University demonstrated in the laboratory that an object made of metamaterials can be partially invisible to particular wavelengths of light (not visible light, but rather microwaves). A few groups, including one at the University of California, Berkeley, have achieved a microscopically-sized carpet cloak. These and other studies have suggested that the Hollywood fantasy of invisibility may one day be reality.

While such invisibility has been achieved so far in the laboratory, it is very limited. It works, but only for a narrow band of light wavelengths. Nobody has ever made an object invisible to the broad range of wavelengths our eyes can see, and doing so remains a challenge.

Another challenge has been visualizing a cloaked object. It is very likely that any invisibility cloak would remain partly seen because of imperfections and optical effects. Up to now, nobody has been able to show what this would look like -- even on a computer.

The problem is that metamaterials may have optical properties that vary over their length. Rendering a room with such an object in it requires building hundreds of thousands of distinct volume elements that each independently interact with the light in the room. The standard software that scientists and engineers use to simulate light in a room only allows for a few hundred volume elements, which is nowhere close to the complexity needed to handle many metamaterials such as the carpet cloak, says Halimeh.

So he and his colleagues built the software needed to do just that. Wanting to demonstrate it, they rendered a virtual museum niche with three walls, a ceiling, and a floor. In the middle of the room, they place the carpet cloak -- leading the observer to perceive a flat reflecting floor, thus cloaking the bump and any object hidden underneath it.

This work was funded by Deutsche Forschungsgemeinschaft (DFG) and the State of Baden-Württemberg through the DFG-Center for Functional Nanostructures (CFN), by the European Commission within the PHOME project, and by the Bundesministerium für Bildung und Forschung (BMBF) via the METAMAT project.


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Journal Reference:

  1. J.C. Halimeh, T. Ergin, J. Mueller, N. Stenger, and M. Wegener. Photorealistic images of carpet cloaks. Optics Express, 2009; 17 (22): 19328 DOI: 10.1364/OE.17.019328

Cite This Page:

Optical Society of America. "Invisibility visualized: New software for rendering cloaked objects." ScienceDaily. ScienceDaily, 13 November 2009. <www.sciencedaily.com/releases/2009/11/091112171409.htm>.
Optical Society of America. (2009, November 13). Invisibility visualized: New software for rendering cloaked objects. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2009/11/091112171409.htm
Optical Society of America. "Invisibility visualized: New software for rendering cloaked objects." ScienceDaily. www.sciencedaily.com/releases/2009/11/091112171409.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) — China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins