Featured Research

from universities, journals, and other organizations

Parkinson's disease: Findings could speed development of new drugs

Date:
November 18, 2009
Source:
Garvan Institute
Summary:
Scientists have significantly advanced our understanding of dopamine release from nerve cells, findings that should speed the development of more effective drugs for treating Parkinson's disease. People with Parkinson's disease suffer from muscle rigidity, tremor, a slowing of physical movement and, in extreme cases, a loss of physical movement. These primary symptoms are caused by the loss of dopamine producing nerve cells in the brain.

Dopamine nerve cell synapses (green).
Credit: Image courtesy of Garvan Institute

Australian scientists have significantly advanced our understanding of dopamine release from nerve cells, findings that should speed the development of more effective drugs for treating Parkinson's Disease.

People with Parkinson's Disease suffer from muscle rigidity, tremor, a slowing of physical movement and, in extreme cases, a loss of physical movement. These primary symptoms are caused by the loss of dopamine producing nerve cells in the brain.

Medicines used for treating Parkinson's either provide extra dopamine or attach to the remaining nerve cells that release dopamine and regulate its release. In the latter case, no-one understands the mechanisms involved, or how to control them.

When an electrical impulse reaches the end of a dopamine nerve cell, called a synapse, it sometimes stimulates the release of dopamine. Yet more often it doesn't. Only about 1 in 5 impulses cause dopamine release, and the release rhythm is irregular. So the cell might release dopamine 5 times in a row, then not release twice, then release once, and so on.

Neuroscientists at Sydney's Garvan Institute of Medical Research have developed a mathematical model and microscopy method that reveal the mechanisms behind synaptic dopamine release -- and the factors that govern the probability of release.

These important findings, made by Drs James Daniel and Bryce Vissel, are now published online in the Journal of Neuroscience.

"While there has been an enormous amount of effort put into the development of drugs for Parkinson's Disease, very little has been known about how the dopamine releasing drugs achieve their effects, other than the fact they attach to a receptor on a dopamine nerve cell, and then something happens," said Dr Vissel.

"We know that there's an intrinsic probability of the release of a neurotransmitter, but what's really interesting is that this release probability is regulated. A neuron can make it more likely or less likely that a neurotransmitter will be released, but it can't guarantee release. For example, it becomes more likely that a neurotransmitter will be released in a nerve pathway that is used a lot."

Neurotransmitters are small molecules that are released from one nerve cell and which act on the next nerve cell. Some are excitatory, some inhibitory, some modulatory. Dopamine is a modulator. In other words, it smooths out the ups and downs of a nerve cell, effectively telling it 'not to get over excited', or 'not to get over inhibited'. All the inputs add up, and if a nerve cell gets enough plusses, it fires an impulse.

According to Vissel, we are still in the dark ages in understanding the sub-microscopic events that take place in the brain. "We have roughly 100 billion nerve cells in our brains, with up to 100,000 connections each. We're only just beginning to understand that every connection is regulated in the most extraordinarily sophisticated way," he explained.

"The surprising thing is that out of all this irregularity and complexity comes predictable or reliable function. Most of us can catch a ball that is thrown to us without dropping it, for example. When you think about the millions of nerve cell events in that simple act alone, it's remarkable. Unfortunately, in Parkinson's disease this phenomenal ability to regulate movement is lost".

"Our work involved developing sophisticated statistical analysis protocols and mathematical models of synapses, and it helps de-mystify the part of the process that takes place at the dopamine nerve cell synapse. We believe it will help us work out how drugs currently being used to treat Parkinson's Disease are regulating dopamine release. It will also open up new avenues for pharmaceutical development."


Story Source:

The above story is based on materials provided by Garvan Institute. Note: Materials may be edited for content and length.


Cite This Page:

Garvan Institute. "Parkinson's disease: Findings could speed development of new drugs." ScienceDaily. ScienceDaily, 18 November 2009. <www.sciencedaily.com/releases/2009/11/091118101357.htm>.
Garvan Institute. (2009, November 18). Parkinson's disease: Findings could speed development of new drugs. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2009/11/091118101357.htm
Garvan Institute. "Parkinson's disease: Findings could speed development of new drugs." ScienceDaily. www.sciencedaily.com/releases/2009/11/091118101357.htm (accessed September 2, 2014).

Share This




More Mind & Brain News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins