Featured Research

from universities, journals, and other organizations

Chemists get custom-designed microscopic particles to self-assemble in liquid crystal

Date:
November 26, 2009
Source:
University of California - Los Angeles
Summary:
Chemists and physicists have succeeded in getting custom-shaped particles to interact and assemble in a controlled way in a liquid crystal.

Polarized light microscopy image of a square microparticle in liquid crystal. An image taken using polarized light microscopy. Clayton Lapointe, Thomas G. Mason and Ivan Smalyukh have succeeded in getting custom-shaped particles to interact and assemble in a controlled way in a liquid crystal. The colors indicate the direction of alignment of rod-like molecules outside the square microparticle.
Credit: Clayton Lapointe/UCLA Chemistry and Physics

Chemists and physicists have succeeded in getting custom-shaped microparticles to interact and self-assemble in a controlled way in a liquid crystal.

The research, federally funded by the National Science Foundation, appears in the Nov. 20 edition of the journal Science.

"We're learning the rules about how these lithographic particles self-assemble," said Thomas G. Mason, a UCLA professor of chemistry and physics and a member of the California NanoSystems Institute at UCLA. "This method may enable us to cause them to assemble in desired configurations."

The scientists anticipate that their "LithoParticles," which are made of solid polymeric materials, will have significant technological and scientific uses.

"We're examining how pairs of particles interact and come to attach together," Mason said. "If we can get the particles to interact in certain controlled ways, we can build larger-scale assemblies that may have applications in photonics, optical communication networks and a variety of other areas."

Mason and his colleagues -- lead author Clayton Lapointe, a postdoctoral scholar at UCLA, formerly at the University of Colorado at Boulder, and Ivan Smalyukh, an assistant professor of physics at the University of Colorado at Boulder -- used an optical microscope to study the attractions between the particles, which they custom designed in various shapes, including triangles, squares and pentagons. The particles are too small to see with the unaided eye but are quite clear with the instrument.

"This is a very complex material that we have created," said Mason, whose research is at the intersection of chemistry, physics, engineering and biology. "We have made lithographic particles dispersed in a liquid crystal, and the molecular constituents are aligned."

Particles of different shapes interact in different ways, Lapointe, Mason and Smalyukh report. Those with an odd number of sides, such as triangles and pentagons, interact differently than particles shaped like squares.

"In this environment, the particles have different kinds of interactions that depend on their shapes," Mason said. "We have shown in a systematic way how by changing the number of sides of the particles in a controlled way, we can characterize the differences in their interactions."

The scientists added materials to the liquid crystal to get the particles to attract. They produced the geometric particles using the same method Mason and his UCLA used to design and mass-produce billions of fluorescent microscale particles in the shapes of all 26 letters of the alphabet, as well as geometric shapes, such as triangles, crosses and doughnuts, in 2007. Now they have watched the particles interact.

In another paper, UCLA postdoctoral scholar Kun Zhao and Mason report discovering new states of matter in two dimensions. Their research, which appears in the Nov. 13 edition of the journal Physical Review Letters, focused on a two-dimensional surface with pentagon-shaped particles that were free to move on this surface. Zhao and Mason studied the structures as they increased the area fraction of the pentagons in the confined two-dimensional plane. They used a lithographic technique to make the particles and studied them in water on a flat glass surface.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Los Angeles. "Chemists get custom-designed microscopic particles to self-assemble in liquid crystal." ScienceDaily. ScienceDaily, 26 November 2009. <www.sciencedaily.com/releases/2009/11/091125094317.htm>.
University of California - Los Angeles. (2009, November 26). Chemists get custom-designed microscopic particles to self-assemble in liquid crystal. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2009/11/091125094317.htm
University of California - Los Angeles. "Chemists get custom-designed microscopic particles to self-assemble in liquid crystal." ScienceDaily. www.sciencedaily.com/releases/2009/11/091125094317.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) — The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins