Featured Research

from universities, journals, and other organizations

Implant-based cancer vaccine is first to eliminate tumors in mice

Date:
November 26, 2009
Source:
Harvard University
Summary:
A cancer vaccine carried into the body on a carefully engineered, fingernail-sized implant is the first to successfully eliminate tumors in mammals. The new approach, pioneered by bioengineers and immunologists, uses plastic disks impregnated with tumor-specific antigens and implanted under the skin to reprogram the mammalian immune system to attack tumors.

A cancer vaccine carried into the body on a carefully engineered, fingernail-sized implant is the first to successfully eliminate tumors in mammals, scientists recently reported in the journal Science Translational Medicine.

Related Articles


The new approach, pioneered by bioengineers and immunologists at Harvard University, uses plastic disks impregnated with tumor-specific antigens and implanted under the skin to reprogram the mammalian immune system to attack tumors. The new paper describes the use of such implants to eradicate melanoma tumors in mice.

"This work shows the power of applying engineering approaches to immunology," says David J. Mooney, the Robert P. Pinkas Family Professor of Bioengineering in Harvard's School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering. "By marrying engineering and immunology through this collaboration with Glenn Dranoff at the Dana-Farber Cancer Institute, we've taken a major step toward the design of effective cancer vaccines."

Most cancer cells easily skirt the immune system, which operates by recognizing and attacking invaders from outside the body. The approach developed by Mooney's group redirects the immune system to target tumors, and appears both more effective and less cumbersome than other cancer vaccines currently in clinical trials.

Conventional cancer vaccinations remove immune cells from the body, reprogram them to attack malignant tissues, and return them to the body. However, more than 90 percent of reinjected cells have died before having any effect in experiments.

The slender implants developed by Mooney's group are 8.5 millimeters in diameter and made of an FDA-approved biodegradable polymer. Ninety percent air, the disks are highly permeable to immune cells and release cytokines, powerful recruiters of immune-system messengers called dendritic cells.

These cells enter an implant's pores, where they are exposed to antigens specific to the type of tumor being targeted. The dendritic cells then report to nearby lymph nodes, where they direct the immune system's T cells to hunt down and kill tumor cells.

"Inserted anywhere under the skin -- much like the implantable contraceptives that can be placed in a woman's arm -- the implants activate an immune response that destroys tumor cells," Mooney says.

The technique may have powerful advantages over surgery and chemotherapy, and may also be useful in combination with existing therapies. It only targets tumor cells, avoiding collateral damage elsewhere in the body. And, much as an immune response to a bacterium or virus generates long-term resistance, researchers anticipate cancer vaccines will generate permanent and body-wide resistance against cancerous cells, providing durable protection against relapse.

Mooney says the new approach's strength lies in its ability to simultaneously regulate the two arms of the human immune system: one that destroys foreign material and one that protects tissue native to the human body. The implant-based vaccine recruits several types of dendritic cells that direct destructive immune responses, creating an especially potent anti-tumor response.

"This approach is able to simultaneously upregulate the destructive immune response to the tumor while downregulating the arm of the immune system that leads to tolerance," Mooney says. "In cancer, this latter arm is typically a limiting feature of immunotherapies, since it can extinguish vaccine activity and afford tumors a degree of protection."

Mooney's co-authors are Omar A. Ali of Harvard's School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering and InCytu, Inc.; Dwaine Emerich of InCytu, Inc.; and Glenn Dranoff of Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School. Their work was supported by the National Institutes of Health, Harvard University, and InCytu, Inc.


Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.


Cite This Page:

Harvard University. "Implant-based cancer vaccine is first to eliminate tumors in mice." ScienceDaily. ScienceDaily, 26 November 2009. <www.sciencedaily.com/releases/2009/11/091125145819.htm>.
Harvard University. (2009, November 26). Implant-based cancer vaccine is first to eliminate tumors in mice. ScienceDaily. Retrieved March 1, 2015 from www.sciencedaily.com/releases/2009/11/091125145819.htm
Harvard University. "Implant-based cancer vaccine is first to eliminate tumors in mice." ScienceDaily. www.sciencedaily.com/releases/2009/11/091125145819.htm (accessed March 1, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rehab Robot Helps Restore Damaged Muscles and Nerves

Rehab Robot Helps Restore Damaged Muscles and Nerves

Reuters - Innovations Video Online (Mar. 1, 2015) A rehabilitation robot prototype to help restore deteriorated nerves and muscles using electromyography and computer games. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Reuters - Innovations Video Online (Feb. 27, 2015) A dongle that plugs into a Smartphone mimics a lab-based blood test for HIV and syphilis and can detect the diseases in 15 minutes, say researchers. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Doctor Says Head Transplants Possible Within Two Years

Doctor Says Head Transplants Possible Within Two Years

Buzz60 (Feb. 27, 2015) An Italian doctor is saying he could stick someone&apos;s head onto someone else&apos;s body. Patrick Jones (@Patrick_E_Jones) reports. Video provided by Buzz60
Powered by NewsLook.com
How Your Dentist Could Help Screen You For Diabetes

How Your Dentist Could Help Screen You For Diabetes

Newsy (Feb. 27, 2015) A new study from researchers at New York University suggests dentists could soon use blood samples taken from patients&apos; mouths to test for diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins