Featured Research

from universities, journals, and other organizations

Nervy research: Researchers take initial look at ion channels in a model system

Date:
December 6, 2009
Source:
National Institute of Standards and Technology (NIST)
Summary:
New research has allowed scientists to observe nerve ion channels within the cell surface membrane for the first time, potentially offering insights for future drug development.

An imaging technique known as neutron diffraction, used along with molecular simulations, revealed that an ion channel’s voltage sensing domain (red, yellow and blue molecule at center) perturbs the two-layered cell membrane that surrounds it (yellow surfaces), causing the membrane to thin slightly.
Credit: NIST

Before one of your muscles can twitch, before the thought telling it to flex can race down your nerve, a tiny floodgate of sorts -- called an ion channel -- must open in the surface of each cell in these organs to let in the chemical signals that spur the cell to action. New research at the National Institute of Standards and Technology (NIST) has allowed scientists to observe ion channels within the surface membrane for the first time, potentially offering insights for future drug development.

Because they function as gatekeepers for messages passing among nerve cells, ion channels are the target of a host of drugs that treat psychological and neurological issues. But because the proteins that form the channels are hard to observe, obtaining knowledge of their operation has proved difficult. Studies of the proteins have been limited to either the molecules in isolation or dried and crystallized to get an idea of their structures. Now, a multi-institutional team working at NIST's Center for Neutron Research (NCNR) has provided a glimpse of the proteins in their naturally occurring form and interacting with the surrounding cell membrane.

The findings, just reported in the journal Nature, improve our understanding of the moving portion of the ion channel that responds to voltage differences across the cell membrane, according to team leader Stephen White. While the work may not be of practical medical use for some time, he says, it is a useful step toward understanding how signals travel -- particularly among neurons.

"All of the communications in the body are electrical," says White, a biophysicist at the University of California, Irvine. "The motion of life depends on ion channels responding to voltage differences, so that they open and close at just the right moment, controlling the use of energy. Without them, nothing would happen in the body."

By investigating this portion of the ion channel, called a voltage-sensing domain, the team has provided science's first glimpse of how an ion channel's shape and motion affects the cell membrane, which in turn helps protect and stabilize the proteins that form the channel. White says further research could lead to a complete picture of how ion channels function.

"We still can't see in detail how the gate opens and closes, but that's our eventual goal," White says. "We hope that someday we'll be able to detect the motion of these voltage-sensing domains in their up and down states."

The research team, jointly headed by White and Kenton Swartz of the National Institute of Neurological Disorders and Stroke (NINDS), also includes scientists from the University of Missouri, the National Institute of Alcohol Abuse and Alcoholism and the NCNR. Funding for the study was provided by the National Science Foundation, the National Institute of General Medical Sciences and NINDS.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Krepkiy, M. Mihailescu, J.A. Freites, E.V. Schow, D.L. Worcester, K. Gawrisch, D.J. Tobias, S.H. White and K. Swartz. Structure and hydration of membranes embedded with voltage-sensing domains. Nature, 2009; 462 (7272): 473 DOI: 10.1038/nature08542

Cite This Page:

National Institute of Standards and Technology (NIST). "Nervy research: Researchers take initial look at ion channels in a model system." ScienceDaily. ScienceDaily, 6 December 2009. <www.sciencedaily.com/releases/2009/12/091202091026.htm>.
National Institute of Standards and Technology (NIST). (2009, December 6). Nervy research: Researchers take initial look at ion channels in a model system. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2009/12/091202091026.htm
National Institute of Standards and Technology (NIST). "Nervy research: Researchers take initial look at ion channels in a model system." ScienceDaily. www.sciencedaily.com/releases/2009/12/091202091026.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins