Featured Research

from universities, journals, and other organizations

Lasers used to make first boron-nitride nanotube yarn

Date:
December 3, 2009
Source:
DOE/Thomas Jefferson National Accelerator Facility
Summary:
Researchers have used lasers to create the first practical macroscopic yarns from boron nitride fibers, opening the door for an array of applications, from radiation-shielded spacecraft to stronger body armor, according to a just-published study.

A yarn spun of boron-nitride nanotubes suspends a quarter.
Credit: Image courtesy of DOE/Thomas Jefferson National Accelerator Facility

Researchers have used lasers to create the first practical macroscopic yarns from boron nitride fibers, opening the door for an array of applications, from radiation-shielded spacecraft to stronger body armor, according to a just-published study.

Researchers at NASA's Langley Research Center, the Department of Energy's Thomas Jefferson National Accelerator Facility and the National Institute of Aerospace created a new technique to synthesize high-quality boron-nitride nanotubes (BNNTs). They are highly crystalline and have a small diameter. They also structurally contain few walls and are very long. Boron nitride is the white material found in clown make-up and face powder.

"Before, labs could make really good nanotubes that are are short or really crummy ones that are long. We've developed a technique that makes really good ones that are really long," said Mike Smith, a staff scientist at NASA's Langley Research Center.

The synthesis technique, called the pressurized vapor/condenser (PVC) method, was developed with Jefferson Lab's Free-Electron Laser and later perfected using a commercial welding laser. In this technique, the laser beam strikes a target inside a chamber filled with nitrogen gas. The beam vaporizes the target, forming a plume of boron gas. A condenser, a cooled metal wire, is inserted into the boron plume. The condenser cools the boron vapor as it passes by, causing liquid boron droplets to form. These droplets combine with the nitrogen to self-assemble into BNNTs.

Researchers used the PVC method to produce the first high-quality BNNTs that are long enough to be spun into macroscopic yarn, in this case centimeters long. A cotton-like mass of nanotubes was finger-twisted into a yarn about one millimeter wide, indicating that the nanotubes themselves are about one millimeter long.

"They're big and fluffy, textile-like," said Kevin Jordan, a staff electrical engineer at Jefferson Lab. "This means that you can use commercial textile manufacturing and handling techniques to blend them into things like body armor and solar cells and other applications."

Transmission electron microscope images show that the nanotubes are very narrow, averaging a few microns in diameter. TEM images also revealed that the BNNTs tended to be few-walled, most commonly with two-five walls, although single-wall nanotubes were also present. Each wall is a layer of material, and fewer-walled nanotubes are the most sought after.

The researchers say the next step is to test the properties of the new boron-nitride nanotubes to determine the best potential uses for the new material. They are also attempting to improve and scale up the production process.

"Theory says these nanotubes have energy applications, medical applications and, obviously, aerospace applications," said Jordan.

Smith agreed, "Some of these things are going to be dead ends and some are going to be worth pursuing, but we won't know until we get material in people's hands."

The research will be published in the December 16 issue of the journal Nanotechnology. It will also be presented at the 2009 Materials Research Society Fall Meeting on December 3.

The research was supported by the NASA Langley Creativity and Innovation Program, the NASA Subsonic Fixed Wing program, DOE's Jefferson Lab and the Commonwealth of Virginia. The experiments were hosted at Jefferson Lab.


Story Source:

The above story is based on materials provided by DOE/Thomas Jefferson National Accelerator Facility. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michael W Smith, Kevin C Jordan, Cheol Park, Jae-Woo Kim, Peter T Lillehei, Roy Crooks and Joycelyn S Harrison. Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method. Nanotechnology, 2009; 20 (50): 505604 DOI: 10.1088/0957-4484/20/50/505604

Cite This Page:

DOE/Thomas Jefferson National Accelerator Facility. "Lasers used to make first boron-nitride nanotube yarn." ScienceDaily. ScienceDaily, 3 December 2009. <www.sciencedaily.com/releases/2009/12/091202205634.htm>.
DOE/Thomas Jefferson National Accelerator Facility. (2009, December 3). Lasers used to make first boron-nitride nanotube yarn. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2009/12/091202205634.htm
DOE/Thomas Jefferson National Accelerator Facility. "Lasers used to make first boron-nitride nanotube yarn." ScienceDaily. www.sciencedaily.com/releases/2009/12/091202205634.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins