Featured Research

from universities, journals, and other organizations

Scientists take theoretical research on 'nasty' molecule to next level

Date:
December 11, 2009
Source:
University of Delaware
Summary:
Some atoms don't always follow the rules. Take the beryllium dimer, a seemingly simple molecule made up of two atoms. For decades, scientists believed the two atoms that compose the beryllium dimer repelled each other. Scientists have now confirmed a 12th and highest vibrational level for the beryllium molecule.

Konrad Patkowski, a postdoctoral researcher at UD who works with physicist Krzysztof Szalewicz, is the lead author of an article in the journal Science, confirming a 12th and highest vibrational level for the beryllium molecule.
Credit: Photo by Ambre Alexander/Courtesy of University of Delaware

Some atoms don't always follow the rules. Take the beryllium dimer, a seemingly simple molecule made up of two atoms that University of Delaware physicists Krzysztof Szalewicz and Konrad Patkowski and colleague Vladimνr Spirko of the Academy of Sciences of the Czech Republic report on in the Dec. 4 edition of the journal Science.

Beryllium is a strong, hard, toxic metal found naturally in minerals such as emeralds and commonly used as an alloy with other metals in many applications, from the tweeters of loudspeakers for public address systems to elements of nuclear weapons.

For decades, scientists believed the two atoms that compose the beryllium dimer repelled each other. That follows a basic theory of chemistry that explains how the electrons in a molecule occupy different orbitals, says Patkowski, a postdoctoral researcher at UD who works in the Szalewicz Lab and was the lead author of the study.

However, in the 1960s, scientists discovered that instead of repelling each other, the two atoms actually bond with each other.

More than 100 theoretical papers have been published on this bonding energy, Patkowski says, but they report a wide range of predictions and the most trustworthy ones differed dramatically from the measured value.

However, in May 2009, a scientific team from Emory University reported in Science the results of an experimental study that recorded the vibrational energy of the bonding atoms for 11 levels, finally reconciling the experimental and theoretical models.

"A molecule vibrates, so the distance between atoms changes in time. A molecule can't just sit there and not vibrate," Patkowski explains. "The more vibrational energy a molecule has, the farther its atoms stray from their equilibrium positions."

In this latest issue of Science, the UD-led team confirms a 12th and highest vibrational level for the beryllium molecule, thanks in part to their Czech colleague Spirko's expertise in "morphing," which enables researchers to make simple changes to the theoretical interaction energy curve to agree with experimental findings. Morphed versions of this potential energy, fitted to experimental data, closely reproduce the observed spectra.

Patkowski notes that the UD study was close to completion when the Emory team published their results.

"Their results agreed with our study, so it was really gratifying to see the previous mysterious disagreement between experimental and theoretical numbers from the past disappear. Their work showed us we were going in the right direction," Patkowski notes.

The beryllium dimer is commonly used in benchmarking studies in experimental and theoretical physics, yet the molecule is anything but common, Patkowski says.

"It's a prototype system that is small and nasty, both for experimental studies, because of its toxicity and reactivity, and for theoretical studies, because standard quantum chemistry methods work very poorly here," he notes.

"The interesting thing about this molecule is that basic chemistry knowledge tells us that the atoms are not going to bond, but they do -- and it's a pretty strong one. It's a nice model for developing new theories of molecular physics," Patkowski says.

The research was funded by the National Science Foundation (U.S.) and by the Academy of Sciences of the Czech Republic and the Czech Ministry of Education, Youth and Sports.


Story Source:

The above story is based on materials provided by University of Delaware. The original article was written by Tracey Bryant. Note: Materials may be edited for content and length.


Cite This Page:

University of Delaware. "Scientists take theoretical research on 'nasty' molecule to next level." ScienceDaily. ScienceDaily, 11 December 2009. <www.sciencedaily.com/releases/2009/12/091204172755.htm>.
University of Delaware. (2009, December 11). Scientists take theoretical research on 'nasty' molecule to next level. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2009/12/091204172755.htm
University of Delaware. "Scientists take theoretical research on 'nasty' molecule to next level." ScienceDaily. www.sciencedaily.com/releases/2009/12/091204172755.htm (accessed September 16, 2014).

Share This



More Matter & Energy News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) — MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) — New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins