Featured Research

from universities, journals, and other organizations

Tiny molecule slows progression of Lou Gehrig's disease in mice

Date:
December 11, 2009
Source:
UT Southwestern Medical Center
Summary:
A substance released by muscles in response to nerve injury can reduce symptoms and prolong life in a mouse model of amyotrophic lateral sclerosis (ALS), researchers have found. The finding has already prompted development of possible drugs to treat the disease.

Dr. Eric Olson.
Credit: Image courtesy of UT Southwestern Medical Center

Researchers at UT Southwestern Medical Center have found that a molecule produced naturally by muscles in response to nerve damage can reduce symptoms and prolong life in a mouse model of amyotrophic lateral sclerosis (ALS).

Related Articles


"We believe we can apply this research toward drug development," said Dr. Eric Olson, chairman of molecular biology at UT Southwestern and senior author of the study, which appears in the Dec. 11 issue of Science.

ALS, also known as Lou Gehrig's disease, damages motor nerve cells that control muscles, leading to muscle weakness, paralysis and death. There is no treatment that can slow it, and no cure.

As ALS kills nerves, the muscles they control begin to wither.

The damaged muscles, however, can "re-innervate" themselves by prompting healthy nerves to send new branches their way, like limbs in a damaged hedge filling in a gap.

Dr. Olson said skeletal muscles produce a molecule called microRNA-206 (miR-206) to serve as a chemical signal to steer the new nerve endings and maintain their interactions with muscles. But the research suggests that miR-206 can only work for so long. As nerves continue to die, there comes a point where the surviving nerves can no longer carry the load, and symptoms like muscle weakness appear.

"While miR-206 initially prompts nearby surviving nerves to send new branches to the muscles, it only delays the inevitable," Dr. Olson said. "Our findings correlate with the observation in ALS patients that the disease is nearly asymptomatic until a large fraction of motor neurons has died, at which point the few remaining ones can't compensate sufficiently. These results provide a new perspective on the mechanisms of ALS," he said. "MiR-206 seems to sense nerve injury and promote regeneration.

"Because miR-206 only exists in skeletal muscle, a drug based on it might not affect other tissues. That limits its risk of side effects and is a key part of its appeal as a potential therapy."

In collaboration with a company he co-founded, called miRagen Therapeutics, Dr. Olson is developing potential drugs based on miR-206.

Dr. Olson is director of the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer and the Nearburg Family Center for Basic and Clinical Research in Pediatric Oncology. He holds the Pogue Distinguished Chair in Research on Cardiac Birth Defects, the Robert A. Welch Distinguished Chair in Science and the Annie and Willie Nelson Professorship in Stem Cell Research.

Other UT Southwestern researchers taking part in the study included co-lead author Andrew Williams, graduate student; Dr. Viviana Moresi, postdoctoral researcher in molecular biology; Xiaoxia Qi, senior research scientist in molecular biology; John McAnally, research associate in molecular biology; Dr. Jeffrey Elliott, professor of neurology; and Dr. Rhonda Bassel-Duby, professor of molecular biology. Researchers from Harvard University also participated in the study.

The study was funded by the National Institutes of Health, the Donald W. Reynolds Center for Clinical Cardiovascular Research, the Leducq Foundation and the Welch Foundation.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

UT Southwestern Medical Center. "Tiny molecule slows progression of Lou Gehrig's disease in mice." ScienceDaily. ScienceDaily, 11 December 2009. <www.sciencedaily.com/releases/2009/12/091210153527.htm>.
UT Southwestern Medical Center. (2009, December 11). Tiny molecule slows progression of Lou Gehrig's disease in mice. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2009/12/091210153527.htm
UT Southwestern Medical Center. "Tiny molecule slows progression of Lou Gehrig's disease in mice." ScienceDaily. www.sciencedaily.com/releases/2009/12/091210153527.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins