Featured Research

from universities, journals, and other organizations

Signaling decreases blood pressure, study finds

Date:
December 26, 2009
Source:
Journal of Clinical Investigation
Summary:
Blood pressure is controlled in part by changes in the radius of blood vessels; when the smooth muscle cells in the wall of a blood vessel contract, the radius of the blood vessel decreases and blood pressure increases. Researchers have now identified in mice a new signaling pathway that contributes to relaxation of smooth muscle cells in blood vessel walls triggered by the molecule NO and thereby decreases blood pressure.

Blood pressure is controlled in part by changes in the radius of blood vessels; when the smooth muscle cells in the wall of a blood vessel contract, the radius of the blood vessel decreases and blood pressure increases.

Related Articles


A team of researchers at CSIC-University of Salamanca, Spain, has now identified in mice a new signaling pathway that contributes to relaxation of smooth muscle cells in blood vessel walls triggered by the molecule NO and thereby decreases blood pressure.

Mice lacking the protein Vav2 have elevated blood pressure. By analyzing these mice, the team, led by Xosé Bustelo, identified a Vav2 signaling pathway that normally contributes to NO-triggered relaxation of smooth muscle cells in blood vessel walls. The pathway involves Vav2 activation of the proteins Rac1 and Pak1. Absence of Pak1 activation in Vav2-deficient mice resulted in excessive activity of the protein phosphodiesterase type 5. Consistent with this, treating Vav2-deficient mice with phosphodiesterase type 5 inhibitors reduced their blood pressure to a normal level.

As defective blood vessel reactivity to NO contributes to the symptoms of diseases such as atherosclerosis (hardening of the arteries) and diabetes, the authors suggest that stimulating the pathway they have identified might be of therapeutic benefit in patients with these diseases.

The research is reported in the Journal of Clinical Investigation.



Story Source:

The above story is based on materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Journal Reference:

  1. Vincent Sauzeau, María A. Sevilla, María J. Montero, and Xosé R. Bustelo. The Rho/Rac exchange factor Vav2 controls nitric oxide-dependent responses in mouse vascular smooth muscle cells. Journal of Clinical Investigation, 2009; DOI: 10.1172/JCI38356

Cite This Page:

Journal of Clinical Investigation. "Signaling decreases blood pressure, study finds." ScienceDaily. ScienceDaily, 26 December 2009. <www.sciencedaily.com/releases/2009/12/091214220053.htm>.
Journal of Clinical Investigation. (2009, December 26). Signaling decreases blood pressure, study finds. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2009/12/091214220053.htm
Journal of Clinical Investigation. "Signaling decreases blood pressure, study finds." ScienceDaily. www.sciencedaily.com/releases/2009/12/091214220053.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins