Featured Research

from universities, journals, and other organizations

Signaling decreases blood pressure, study finds

Date:
December 26, 2009
Source:
Journal of Clinical Investigation
Summary:
Blood pressure is controlled in part by changes in the radius of blood vessels; when the smooth muscle cells in the wall of a blood vessel contract, the radius of the blood vessel decreases and blood pressure increases. Researchers have now identified in mice a new signaling pathway that contributes to relaxation of smooth muscle cells in blood vessel walls triggered by the molecule NO and thereby decreases blood pressure.

Blood pressure is controlled in part by changes in the radius of blood vessels; when the smooth muscle cells in the wall of a blood vessel contract, the radius of the blood vessel decreases and blood pressure increases.

A team of researchers at CSIC-University of Salamanca, Spain, has now identified in mice a new signaling pathway that contributes to relaxation of smooth muscle cells in blood vessel walls triggered by the molecule NO and thereby decreases blood pressure.

Mice lacking the protein Vav2 have elevated blood pressure. By analyzing these mice, the team, led by Xosι Bustelo, identified a Vav2 signaling pathway that normally contributes to NO-triggered relaxation of smooth muscle cells in blood vessel walls. The pathway involves Vav2 activation of the proteins Rac1 and Pak1. Absence of Pak1 activation in Vav2-deficient mice resulted in excessive activity of the protein phosphodiesterase type 5. Consistent with this, treating Vav2-deficient mice with phosphodiesterase type 5 inhibitors reduced their blood pressure to a normal level.

As defective blood vessel reactivity to NO contributes to the symptoms of diseases such as atherosclerosis (hardening of the arteries) and diabetes, the authors suggest that stimulating the pathway they have identified might be of therapeutic benefit in patients with these diseases.

The research is reported in the Journal of Clinical Investigation.



Story Source:

The above story is based on materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Journal Reference:

  1. Vincent Sauzeau, Marνa A. Sevilla, Marνa J. Montero, and Xosι R. Bustelo. The Rho/Rac exchange factor Vav2 controls nitric oxide-dependent responses in mouse vascular smooth muscle cells. Journal of Clinical Investigation, 2009; DOI: 10.1172/JCI38356

Cite This Page:

Journal of Clinical Investigation. "Signaling decreases blood pressure, study finds." ScienceDaily. ScienceDaily, 26 December 2009. <www.sciencedaily.com/releases/2009/12/091214220053.htm>.
Journal of Clinical Investigation. (2009, December 26). Signaling decreases blood pressure, study finds. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2009/12/091214220053.htm
Journal of Clinical Investigation. "Signaling decreases blood pressure, study finds." ScienceDaily. www.sciencedaily.com/releases/2009/12/091214220053.htm (accessed October 23, 2014).

Share This



More Health & Medicine News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) — Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) — Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
US to Track Everyone Coming from Ebola Nations

US to Track Everyone Coming from Ebola Nations

AP (Oct. 22, 2014) — Stepping up their vigilance against Ebola, federal authorities said Wednesday that everyone traveling into the US from Ebola-stricken nations will be monitored for symptoms for 21 days. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Doctors Help Paralysed Man Walk Again, Patient in Disbelief

Doctors Help Paralysed Man Walk Again, Patient in Disbelief

AFP (Oct. 22, 2014) — Polish doctors describe how they helped a paralysed man walk again, with the patient in disbelief at the return of sensation to his legs. Duration: 1:04 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins