Featured Research

from universities, journals, and other organizations

Quantum fluctuations are key in superconductors, researchers find

Date:
January 11, 2010
Source:
Rice University
Summary:
New experiments on a recently discovered class of iron-based superconductors suggest that the ability of their electrons to conduct electricity without resistance is directly connected with the magnetic properties of those electrons. The results by U.S. and Chinese physicists bolster theories that high-temperature superconductivity in materials called "iron pnictides" arises from quantum magnetic fluctuations.

New experiments on a recently discovered class of iron-based superconductors suggest that the ability of their electrons to conduct electricity without resistance is directly connected with the magnetic properties of those electrons.

Related Articles


Results of the experiments appear in the Jan. 8 issue of Physical Review Letters. The tests, which were carried out by a team of U.S. and Chinese physicists, shed light on the fundamental nature of high-temperature superconductivity, said Rice physicist Qimiao Si, a co-author on the study.

If better understood, high-temperature superconductors could be used to revolutionize electric generators, MRI scanners, high-speed trains and other devices.

In the study, scientists from Rice University, the University of Tennessee, Oak Ridge National Laboratory (ORNL), the National Institute of Standards and Technology (NIST), the Chinese Academy of Sciences' Institute of Physics and Renmin University in Beijing examined several iron-arsenide compounds. These are the "undoped" parents of the iron "pnictides" (pronounced: NICK-tides), a class of materials that were found to be high-temperature superconductors in 2008.

The experiments set out to test theoretical predictions that Si and collaborators published in the Proceedings of the National Academy of Sciences last March. They predicted that varying the size of some atoms in the parent compounds could allow physicists to tune the material's quantum fluctuations. These types of fluctuations can create tipping points called magnetic "quantum critical points," a state that exists when a material is at the cusp of transitioning from one quantum phase to another.

Using neutron-scattering facilities at NIST and ORNL, the team bombarded the materials with neutrons to decipher their structural and magnetic properties. The tests, which supported Si's theoretical predictions, determined that the strength of magnetic order in the materials was reduced when arsenic atoms were replaced with slightly smaller phosphorus atoms.

"We found the first direct evidence that a magnetic quantum critical point exists in these materials," Si said.

The results were made possible by the efforts of Nanlin Wang, a physicist from the Chinese Academy of Sciences' Institute of Physics, and his research group. They created a series of samples with varying amounts of phosphorus substituting for arsenic.

The discovery of high-temperature superconductivity in copper-oxide ceramics in 1986 led physicists to realize that quantum effects in electronic materials were far more complex than anticipated. One of these effects is quantum criticality. Criticality occurs near a tipping point that a material goes through when it changes phases. Many phase changes -- like ice melting into water -- occur because of thermal fluctuations. But quantum criticalities and quantum phase changes arise solely from quantum fluctuations.

"Our finding of a quantum critical point in iron pnictides opens the door for new avenues of research into this important class of materials," said University of Tennessee/ORNL physicist Pengcheng Dai, a neutron scattering specialist.

Si said, "The evidence from this study bolsters the hypothesis that high-temperature superconductivity in the iron pnictides originates from electronic magnetism. This should be contrasted to conventional low-temperature superconductivity, which is caused by ionic vibrations."


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Cite This Page:

Rice University. "Quantum fluctuations are key in superconductors, researchers find." ScienceDaily. ScienceDaily, 11 January 2010. <www.sciencedaily.com/releases/2010/01/100109002316.htm>.
Rice University. (2010, January 11). Quantum fluctuations are key in superconductors, researchers find. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2010/01/100109002316.htm
Rice University. "Quantum fluctuations are key in superconductors, researchers find." ScienceDaily. www.sciencedaily.com/releases/2010/01/100109002316.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins