Featured Research

from universities, journals, and other organizations

New quantum cascade lasers emit more light than heat

Date:
January 12, 2010
Source:
Northwestern University
Summary:
Researchers have developed compact, mid-infrared laser diodes that generate more light than heat -- a breakthroughs in quantum cascade laser efficiency.

Northwestern University researchers have developed compact, mid-infrared laser diodes that generate more light than heat -- a breakthroughs in quantum cascade laser efficiency.

The results are an important step toward use of quantum cascade lasers in a variety of applications, including remote sensing of hazardous chemicals.

The research, led by Manijeh Razeghi, the Walter P. Murphy Professor of Electrical Engineering and Computer Science at the McCormick School of Engineering and Applied Science, was published online in the journal Nature Photonics on Jan. 10.

After years of research and industrial development, modern laser diodes in the near-infrared (approximately 1 micron) wavelength range are now extremely efficient. However the mid-infrared (greater than 3 microns) is much more difficult to access and has required the development of new device architectures.

The quantum cascade laser (QCL) is a diode laser that is designed on the quantum mechanical level to produce light at the desired wavelength with high efficiency. Unlike traditional diode lasers, the device is unipolar, requiring only electrons to operate. A significant effort has been spent trying to understand and optimize the electron transport, which would allow researchers to improve the laser quality and efficiency.

Despite the special nature of these devices, laser wafer production is done using standard compound semiconductor growth equipment. By optimizing the material quality in these standard tools, researchers at the Center for Quantum Devices (CQD) at Northwestern, led by Razeghi, have made significant breakthroughs in QCL performance.

Previous reports regarding QCLs with high efficiency have been limited to efficiency values of less than 40 percent, even when cooled to cryogenic temperatures.

After removing design elements unnecessary for low-temperature operation, researchers at CQD have now demonstrated individual lasers emitting at wavelengths of 4.85 microns with efficiencies of 53 percent when cooled to 40 Kelvin.

"This breakthrough is significant because, for the very first time, we are able to create diodes that produce more light than heat," says Razeghi. "Passing the 50 percent mark in efficiency is a major milestone, and we continue to work to optimize the efficiency of these unique devices."

Though efficiency is currently the primary goal, the large demonstrated efficiencies also can be exploited to enable power scaling of the QCL emitters. Recent efforts in broad area QCL development have allowed demonstration of individual pulsed lasers with record output powers up to 120 watts, which is up from 34 watts only a year ago.

This work is being partially supported by the Defense Advanced Research Projects Agency's Efficient Mid-Infrared Laser (EMIL) program. Additional funding is being provided by the Office of Naval Research.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "New quantum cascade lasers emit more light than heat." ScienceDaily. ScienceDaily, 12 January 2010. <www.sciencedaily.com/releases/2010/01/100111171853.htm>.
Northwestern University. (2010, January 12). New quantum cascade lasers emit more light than heat. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2010/01/100111171853.htm
Northwestern University. "New quantum cascade lasers emit more light than heat." ScienceDaily. www.sciencedaily.com/releases/2010/01/100111171853.htm (accessed April 19, 2014).

Share This



More Matter & Energy News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins