Featured Research

from universities, journals, and other organizations

New 'nanoburrs' could help fight heart disease

Date:
January 22, 2010
Source:
Massachusetts Institute of Technology
Summary:
Researchers have built targeted nanoparticles that can cling to artery walls and slowly release medicine, an advance that potentially provides an alternative to drug-releasing stents in some patients with cardiovascular disease.

Researchers have built targeted nanoparticles that can cling to artery walls and slowly release medicine, an advance that potentially provides an alternative to drug-releasing stents in some patients with cardiovascular disease.
Credit: Image courtesy of Massachusetts Institute of Technology

Building on their previous work delivering cancer drugs with nanoparticles, MIT and Harvard researchers have turned their attention to cardiovascular disease, designing new particles that can cling to damaged artery walls and slowly release medicine.

The particles, dubbed "nanoburrs," are coated with tiny protein fragments that allow them to stick to damaged arterial walls. Once stuck, they can release drugs such paclitaxel, which inhibits cell division and helps prevent growth of scar tissue that can clog arteries.

"This is a very exciting example of nanotechnology and cell targeting in action that I hope will have broad ramifications," says MIT Institute Professor Langer, senior author of a paper describing the nanoparticles in the Proceedings of the National Academy of Sciences.

Langer and Omid Farokhzad, associate professor at Harvard Medical School and another senior author of the paper, have previously developed nanoparticles that seek out and destroy tumors. Their nanoburrs, however, are among the first particles that can zero in on damaged vascular tissue.

Mark Davis, professor of chemical engineering at Caltech, says the work is a promising step towards new treatments for cardiovascular and other diseases. "If they could do this in patients -- target particles to injured areas -- that could open up all kinds of new opportunities," says Davis, who was not involved in this research.

On target

Currently, one of the standard ways to treat clogged and damaged arteries is by implanting a vascular stent, which holds the artery open and releases drugs such as paclitaxel. The researchers hope that their new nanoburrs could be used alongside such stents -- or in lieu of them -- to treat damage located in areas not well suited to stents, such as near a fork in the artery.

The nanoburrs are targeted to a structure known as the basement membrane, which lines the arterial walls but is only exposed when those walls are damaged. To build their nanoparticles, the team screened a library of short peptide sequences to find one that binds most effectively to molecules on the surface of the basement membrane. They used the most successful, a seven-amino-acid sequence called C11, to coat the outer layer of their nanoparticles.

The inner core of the 60-nanometer-diameter particles carries the drug, which is bound to a polymer chain called PLA. A middle layer of soybean lecithin, a fatty material, lies between the core and the outer shell, which consists of a polymer called PEG that protects the particles as they travel through the bloodstream.

The drug can only be released when it detaches from the PLA polymer chain, which occurs gradually by a reaction called ester hydrolysis. The longer the polymer chain, the longer this process takes, so the researchers can control the timing of the drug's release by altering the chain length. So far, they have achieved drug release over 12 days, in tests in cultured cells.

Uday Kompella, professor of pharmaceutical sciences at the University of Colorado, says the nanoburr's structure could make it easier to manufacture, because the targeted peptides are attached to an outer shell and not directly to the drug-carrying core, which would require a more complicated chemical reaction. The design also reduces the risk of the nanoparticles bursting and releasing drugs prematurely, says Kompella, who was not involved in this research.

Another advantage of the nanoburrs is that they can be injected intravenously at a site distant from the damaged tissue. In tests in rats, the researchers showed that nanoburrs injected near the tail are able to reach their intended target -- walls of the injured carotid artery but not normal carotid artery. The burrs bound to the damaged walls at twice the rate of nontargeted nanoparticles.

Because the particles can deliver drugs over a longer period of time, and can be injected intravenously, patients would not have to endure repeated and surgically invasive injections directly into the area that requires treatment, says Juliana Chan, a graduate student in Langer's lab and lead author of the paper.

The team is now testing the nanoburrs in rats over a two-week period to determine the most effective dose for treating damaged vascular tissue. The particles may also prove useful in delivering drugs to tumors. "This technology could have broad applications across other important diseases, including cancer and inflammatory diseases where vascular permeability or vascular damage is commonly observed," says Farokhzad.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Anne Trafton, MIT News Office. Note: Materials may be edited for content and length.


Journal Reference:

  1. Juliana Chan, Liangfang Zhang, Rong Tong, Debuyati Ghosh, Weiwei Gao, Grace Liao, Kai Yuet, David Gray, June-Wha Rhee, Jianjun Cheng, Gershon Golomb, Peter Libby, Robert Langer, Omid Farokhzad. Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.0914585107

Cite This Page:

Massachusetts Institute of Technology. "New 'nanoburrs' could help fight heart disease." ScienceDaily. ScienceDaily, 22 January 2010. <www.sciencedaily.com/releases/2010/01/100118153248.htm>.
Massachusetts Institute of Technology. (2010, January 22). New 'nanoburrs' could help fight heart disease. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2010/01/100118153248.htm
Massachusetts Institute of Technology. "New 'nanoburrs' could help fight heart disease." ScienceDaily. www.sciencedaily.com/releases/2010/01/100118153248.htm (accessed August 20, 2014).

Share This




More Health & Medicine News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Raw: World's Oldest Man Lives in Japan

Raw: World's Oldest Man Lives in Japan

AP (Aug. 20, 2014) — A 111-year-old Japanese was certified as the world's oldest man by Guinness World Records on Wednesday. Sakari Momoi, a native of Fukushima in northern Japan, was given a certificate at a hospital in Tokyo. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Do More Wedding Guests Make A Happier Marriage?

Do More Wedding Guests Make A Happier Marriage?

Newsy (Aug. 20, 2014) — A new study found couples who had at least 150 guests at their weddings were more likely to report being happy in their marriages. Video provided by Newsy
Powered by NewsLook.com
Ebola-Hit Sierra Leone's Freetown a City on Edge

Ebola-Hit Sierra Leone's Freetown a City on Edge

AFP (Aug. 19, 2014) — Residents of Sierra Leone's capital voice their fears as the Ebola virus sweeps through west Africa. Duration: 00:56 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins