Featured Research

from universities, journals, and other organizations

Engineering a new way to study hepatitis C

Date:
January 27, 2010
Source:
Massachusetts Institute of Technology
Summary:
Researchers have successfully grown hepatitis C virus in otherwise healthy liver cells in the laboratory, an advance that could allow scientists to develop and test new treatments for the disease.

Researchers at MIT and Rockefeller University have successfully grown hepatitis C virus in otherwise healthy liver cells in the laboratory, an advance that could allow scientists to develop and test new treatments for the disease.

Related Articles


About 200 million people worldwide are infected with hepatitis C, which can lead to liver failure or cancer, and existing drugs are not always effective. To develop better treatments, researchers need to test them in laboratory experiments in liver cells, but it has been difficult to create a suitable tissue model because healthy liver cells tend to lose their liver functions when removed from the body.

Previously, researchers have been able to induce cancerous liver cells to survive and reproduce outside the body, but those cells are not sufficient for studying hepatitis C because their responses to infection are different from those of normal liver cells.

Now, Bhatia, in collaboration with Charles Rice of the Rockefeller University, has developed a way to maintain liver cells for four to six weeks by precisely arranging them on a specially patterned plate. The cells can be infected with hepatitis C for two to three weeks, giving researchers the chance to study the cells' responses to different drugs.

The new model, described in the Proceedings of the National Academy of Sciences, could allow researchers to test the effectiveness of various combinations of drugs, including interferon, a common current treatment, and experimental antibodies that may block the virus from entering cells.

The researchers used healthy liver cells that had been cryogenically preserved and grew them on special plates with micropatterns that direct the cells where to grow. The liver cells were strategically interspersed with other cells called fibroblasts that support the growth of liver tissue.

"If you just put cells on a surface in an unorganized way, they lose their function very quickly," says Bhatia. "If you specify which cells sit next to each other, you can extend the lifetime of the cells and help them maintain their function."

The current system may already be suitable to screen drugs against the strain of hepatitis C used in this work; however, this strain, which was derived from a Japanese patient with fulminant hepatitis is the only strain ever successfully grown in a laboratory environment. The researchers hope to modify the system so they can grow additional strains, such as those more common in North America, which would allow for more thorough drug testing.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alexander Ploss, Salman Khetani, et al. Persistent hepatitis C virus infection in microscale primary human hepatocyte cultures. Proceedings of the National Academy of Sciences, 2010; (in press)

Cite This Page:

Massachusetts Institute of Technology. "Engineering a new way to study hepatitis C." ScienceDaily. ScienceDaily, 27 January 2010. <www.sciencedaily.com/releases/2010/01/100125172944.htm>.
Massachusetts Institute of Technology. (2010, January 27). Engineering a new way to study hepatitis C. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2010/01/100125172944.htm
Massachusetts Institute of Technology. "Engineering a new way to study hepatitis C." ScienceDaily. www.sciencedaily.com/releases/2010/01/100125172944.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Malnutrition on the Rise as Violence Flares in C. Africa

Malnutrition on the Rise as Violence Flares in C. Africa

AFP (Jan. 28, 2015) Violence can flare up at any moment in Bambari with only a bridge separating Muslims and Christians. Malnutrition is on the rise and lack of water means simple cooking fires threaten to destroy makeshift camps where people are living. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Poultry Culled in Taiwan to Thwart Bird Flu

Poultry Culled in Taiwan to Thwart Bird Flu

Reuters - News Video Online (Jan. 28, 2015) Taiwan culls over a million poultry in efforts to halt various strains of avian flu. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Media Criticizing Parents For Not Vaccinating Children

Media Criticizing Parents For Not Vaccinating Children

Newsy (Jan. 28, 2015) As the Disneyland measles outbreak continues to spread, the media says parents who choose not to vaccinate their children are part of the cause. Video provided by Newsy
Powered by NewsLook.com
Shark Bite Victim Making Amazing Recovery

Shark Bite Victim Making Amazing Recovery

AP (Jan. 27, 2015) A Texas woman who lost more than five pounds of flesh to a shark in the Bahamas earlier this month could be released from a Florida hospital soon. Experts believe she was bitten by a bull shark while snorkeling. (Jan. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins