Featured Research

from universities, journals, and other organizations

Engineering a new way to study hepatitis C

Date:
January 27, 2010
Source:
Massachusetts Institute of Technology
Summary:
Researchers have successfully grown hepatitis C virus in otherwise healthy liver cells in the laboratory, an advance that could allow scientists to develop and test new treatments for the disease.

Researchers at MIT and Rockefeller University have successfully grown hepatitis C virus in otherwise healthy liver cells in the laboratory, an advance that could allow scientists to develop and test new treatments for the disease.

About 200 million people worldwide are infected with hepatitis C, which can lead to liver failure or cancer, and existing drugs are not always effective. To develop better treatments, researchers need to test them in laboratory experiments in liver cells, but it has been difficult to create a suitable tissue model because healthy liver cells tend to lose their liver functions when removed from the body.

Previously, researchers have been able to induce cancerous liver cells to survive and reproduce outside the body, but those cells are not sufficient for studying hepatitis C because their responses to infection are different from those of normal liver cells.

Now, Bhatia, in collaboration with Charles Rice of the Rockefeller University, has developed a way to maintain liver cells for four to six weeks by precisely arranging them on a specially patterned plate. The cells can be infected with hepatitis C for two to three weeks, giving researchers the chance to study the cells' responses to different drugs.

The new model, described in the Proceedings of the National Academy of Sciences, could allow researchers to test the effectiveness of various combinations of drugs, including interferon, a common current treatment, and experimental antibodies that may block the virus from entering cells.

The researchers used healthy liver cells that had been cryogenically preserved and grew them on special plates with micropatterns that direct the cells where to grow. The liver cells were strategically interspersed with other cells called fibroblasts that support the growth of liver tissue.

"If you just put cells on a surface in an unorganized way, they lose their function very quickly," says Bhatia. "If you specify which cells sit next to each other, you can extend the lifetime of the cells and help them maintain their function."

The current system may already be suitable to screen drugs against the strain of hepatitis C used in this work; however, this strain, which was derived from a Japanese patient with fulminant hepatitis is the only strain ever successfully grown in a laboratory environment. The researchers hope to modify the system so they can grow additional strains, such as those more common in North America, which would allow for more thorough drug testing.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alexander Ploss, Salman Khetani, et al. Persistent hepatitis C virus infection in microscale primary human hepatocyte cultures. Proceedings of the National Academy of Sciences, 2010; (in press)

Cite This Page:

Massachusetts Institute of Technology. "Engineering a new way to study hepatitis C." ScienceDaily. ScienceDaily, 27 January 2010. <www.sciencedaily.com/releases/2010/01/100125172944.htm>.
Massachusetts Institute of Technology. (2010, January 27). Engineering a new way to study hepatitis C. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2010/01/100125172944.htm
Massachusetts Institute of Technology. "Engineering a new way to study hepatitis C." ScienceDaily. www.sciencedaily.com/releases/2010/01/100125172944.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins