Featured Research

from universities, journals, and other organizations

Diamonds become stronger when squeezed rapidly under extreme conditions

Date:
January 27, 2010
Source:
DOE/Lawrence Livermore National Laboratory
Summary:
Most people know that diamond is one of the hardest solids on Earth, so strong that it can easily cut through glass and steel. Surprisingly, very little is known about the strength of diamond at extreme conditions. But new research shows that diamond becomes even stronger during rapid compression.

Time-integrated photograph of an OMEGA laser shot (43633) to measure high-pressure diamond strength. The diamond target is at the center, surrounded by various diagnostics. The bright white light is ablated plasma, and radial yellow lines are tracks of hot target fragments very late in time.
Credit: Photo by Eugene Kowaluk/LLE

Most people know that diamond is one of the hardest solids on Earth, so strong that it can easily cut through glass and steel.

Related Articles


Surprisingly, very little is known about the strength of diamond at extreme conditions. But new research by Lawrence Livermore National Laboratory scientists shows that diamond becomes even stronger during rapid compression.

Using the Janus laser at LLNL and the Omega laser at the University of Rochester, Livermore scientists and Rochester and UC Berkeley colleagues showed that when shock waves are applied to diamond with powerful lasers, it can support almost a million times atmospheric pressure before being crushed.

The research has implications for the technological uses of diamond, showing that its strength could affect fusion-energy experiments at the National Ignition Facility, where high-density carbon (essentially diamond) is a leading candidate for target capsules.

"But it could also provide insights into the ancient history of natural diamonds found on Earth and in meteorites, where shock waves caused by impact are common," said Stewart McWilliams, lead author of a paper appearing in the upcoming edition of the journal, Physical Review B.

McWilliams conducted the experiments while on a Student Employee Graduate Research Fellowship (SEGRF) at LLNL.

Most natural diamonds are formed at high-pressure, high-temperature conditions existing at depths of 87 to 120 miles in the Earth's mantle. Carbon-containing minerals provide the carbon source, and the growth occurs over periods from 1 billion to 3.3 billion years (25 percent to 75 percent of the age of the Earth).

In the recent research, the team measured the behavior of natural diamond crystals under shock-wave compression between 1 million and 10 million atmospheres of pressure, and the diamonds were crushed and melted in just a nanosecond (one billionth of a second).

"What we found is that diamond exhibits considerable strength right up to the point it melts," McWilliams said.

"We reached some surprising conclusions about the strength of diamond," said LLNL co-author Jon Eggert. "This type of research informs us about the interiors of the gas giants as well our own planet."

Earlier research conducted by Livermore scientists show that diamond melts at around 6 million atmospheres of pressure and 14,000 degrees Fahrenheit. Their experiments mimicked conditions on the icy gas giant planets (Uranus and Neptune) where, according to their research, icebergs of diamond could float on a sea of liquid carbon.

Other Livermore authors include Damien Hicks, David Bradley, Peter Celliers, and Gilbert Collins.


Story Source:

The above story is based on materials provided by DOE/Lawrence Livermore National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. S. McWilliams, J. H. Eggert, D. G. Hicks, D. K. Bradley, P. M. Celliers, D. K. Spaulding, T. R. Boehly, G. W. Collins, and R. Jeanloz. Strength effects in diamond under shock compression from 0.1 to 1 TPa. Physical Review B, 2010; 81 (1): 014111 DOI: 10.1103/PhysRevB.81.014111

Cite This Page:

DOE/Lawrence Livermore National Laboratory. "Diamonds become stronger when squeezed rapidly under extreme conditions." ScienceDaily. ScienceDaily, 27 January 2010. <www.sciencedaily.com/releases/2010/01/100126133356.htm>.
DOE/Lawrence Livermore National Laboratory. (2010, January 27). Diamonds become stronger when squeezed rapidly under extreme conditions. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2010/01/100126133356.htm
DOE/Lawrence Livermore National Laboratory. "Diamonds become stronger when squeezed rapidly under extreme conditions." ScienceDaily. www.sciencedaily.com/releases/2010/01/100126133356.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins