Featured Research

from universities, journals, and other organizations

Novel theory for mammalian stem cell regulation

Date:
February 8, 2010
Source:
Stowers Institute for Medical Research
Summary:
Researchers propose a model of mammalian adult stem cell regulation that may explain how the coexistence of two disparate stem cell states regulates both stem cell maintenance and simultaneously supports rapid tissue regeneration.

Linheng Li, Ph.D., Investigator, together with Hans Clevers, M.D., Ph.D., Director of the Hubrecht Institute in Utrecht, Netherlands, co-authored a prospective review published by the journal Science that proposes a model of mammalian adult stem cell regulation that may explain how the coexistence of two disparate stem cell states regulates both stem cell maintenance and simultaneously supports rapid tissue regeneration.

Adult stem cells are crucial for physiological tissue renewal and regeneration following injury. Current models assume the existence of a single quiescent (resting) population of stem cells residing in a single niche of a given tissue.

The Linheng Li Lab and others have previously reported that primitive blood-forming stem cells can be further separated into quiescent (reserved) and active (primed) sub-populations. Emerging evidence indicates that quiescent and active stem cell sub-populations also co-exist in several tissues -- including hair follicle, intestine, bone marrow, and potentially in the neural system -- in separate yet adjacent microenvironments. In the review, Dr. Li proposes that quiescent and active stem cell populations have separate but cooperative functional roles.

"Both quiescent and active stem cells co-exist in separate 'zones' in the same tissue," explained Dr. Li. "Active stem cells are the 'primed' sub-population that account for the generation of corresponding tissues, whereas quiescent stem cells function as a 'back-up' or 'reserved' sub-population, which can be activated in response to the loss of active stem cells or to tissue damage."

The new model would explain how the balance can be regulated between stem cell maintenance and simultaneous support of rapid tissue regeneration, not only at the individual cell level but also at the stem cell population level. The advantage of maintaining 'zoned' sub-populations of stem cells is to increase longevity of stem cells within organisms that have long life spans and large bodies.

The existence of two sub-populations of adult stem cells offers another advantage in the rapidly regenerating tissues in mammals by reducing the risk for mutations that cause tumors.

Intriguingly, cancers may utilize this same mechanism to maintain co-existing active-quiescent pools of stem cell sub-populations that support fast tumor growth (by active stem cells) while preserving the root of malignancy (by quiescent stem cells). This may explain the basis of drug resistance to cancer treatment.

"If this hypothesis is true, the critical question will be how to target quiescent drug-resistant cancer stem cells," said Dr. Li. "We will test this model in cancers in an effort to determine how to activate quiescent (drug-resistant) cancer stem cells for further targeting."


Story Source:

The above story is based on materials provided by Stowers Institute for Medical Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. Linheng Li and Hans Clevers. Coexistence of Quiescent and Active Adult Stem Cells in Mammals. Science, 2010; 327 (5965): 542 DOI: 10.1126/science.1180794

Cite This Page:

Stowers Institute for Medical Research. "Novel theory for mammalian stem cell regulation." ScienceDaily. ScienceDaily, 8 February 2010. <www.sciencedaily.com/releases/2010/01/100129111835.htm>.
Stowers Institute for Medical Research. (2010, February 8). Novel theory for mammalian stem cell regulation. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2010/01/100129111835.htm
Stowers Institute for Medical Research. "Novel theory for mammalian stem cell regulation." ScienceDaily. www.sciencedaily.com/releases/2010/01/100129111835.htm (accessed April 17, 2014).

Share This



More Health & Medicine News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins