Featured Research

from universities, journals, and other organizations

National Ignition Facility achieves unprecedented 1 megajoule laser shot

Date:
February 1, 2010
Source:
DOE/Lawrence Livermore National Laboratory
Summary:
Scientists at the National Ignition Facility at Lawrence Livermore National Laboratory have successfully delivered an historic level of laser energy -- more than 1 megajoule -- to a target in a few billionths of a second and demonstrated the target drive conditions required to achieve fusion ignition.

Laser bay 1 was commissioned in Sept. 2008. It holds half of NIF's 192 beams.
Credit: Photo by Jacqueline McBride/LLNL

The National Nuclear Security Administration (NNSA) announced that scientists at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) have successfully delivered an historic level of laser energy -- more than 1 megajoule -- to a target in a few billionths of a second and demonstrated the target drive conditions required to achieve fusion ignition.

This is about 30 times the energy ever delivered by any other group of lasers in the world. The peak power of the laser light, which was delivered within a few billionths of a second, was about 500 times that used by the United States at any given time.

"Breaking the megajoule barrier brings us one step closer to fusion ignition at the National Ignition Facility, and shows the universe of opportunities made possible by one of the largest scientific and engineering challenges of our time," said NNSA Administrator Thomas D'Agostino. "NIF is a critical component in our stockpile stewardship program to maintain a safe, secure and effective nuclear deterrent without underground nuclear testing. This milestone is an example of how our nation's investment in nuclear security is producing benefits in other areas, from advances in energy technology to a better understanding of the universe."

In order to demonstrate fusion, the energy that powers the sun and the stars, NIF focuses the energy of 192 powerful laser beams into a pencil-eraser-sized cylinder containing a tiny spherical target filled with deuterium and tritium, two isotopes of hydrogen. Inside the cylinder, the laser energy is converted to X-rays, which compress the fuel until it reaches temperatures of more than 200 million degrees Fahrenheit and pressures billions of times greater than Earth's atmospheric pressure. The rapid compression of the fuel capsule forces the hydrogen nuclei to fuse and release many times more energy than the laser energy that was required to initiate the reaction.

This experimental program to achieve fusion ignition is known as the National Ignition Campaign sponsored by NNSA and is a partnership among LLNL, Los Alamos National Laboratory, the Laboratory for Laser Energetics, General Atomics, Sandia National Laboratories, as well as numerous other national laboratories and universities.

The NIF laser system, the only megajoule laser system in the world, began firing all 192-laser beams onto targets in June 2009. In order to characterize the X-ray drive achieved inside the target cylinders as the laser energy is ramped up, these first experiments were conducted at lower laser energies and on smaller targets than will be used for the ignition experiments. These targets used gas-filled capsules that act as substitutes for the fusion fuel capsules that will be used in the 2010 ignition campaign. The 1 MJ shot represents the culmination of these experiments using an ignition-scale target for the first time.

These early tests have demonstrated that NIF's laser beams can be effectively delivered to the target and are capable of creating sufficient X-ray energy in the target cylinder to drive fuel implosion. The implosions achieved with the surrogate capsules have also been shown to have good symmetry that is adjustable through a variety of techniques. The next step is to move to ignition-like fuel capsules that require the fuel to be in a frozen hydrogen layer (at 425 degrees Fahrenheit below zero) inside the fuel capsule. NIF is currently being made ready to begin experiments with ignition-like fuel capsules in the summer of 2010.

"This accomplishment is a major milestone that demonstrates both the power and the reliability of NIF's integrated laser system, the precision targets and the integration of the scientific diagnostics needed to begin ignition experiments," said NIF Director Ed Moses. "NIF has shown that it can consistently deliver the energy required to conduct ignition experiments later this year."

NIF, the world's largest laser facility, is the first facility expected to achieve fusion ignition and energy gain in a laboratory setting.


Story Source:

The above story is based on materials provided by DOE/Lawrence Livermore National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Lawrence Livermore National Laboratory. "National Ignition Facility achieves unprecedented 1 megajoule laser shot." ScienceDaily. ScienceDaily, 1 February 2010. <www.sciencedaily.com/releases/2010/01/100129121823.htm>.
DOE/Lawrence Livermore National Laboratory. (2010, February 1). National Ignition Facility achieves unprecedented 1 megajoule laser shot. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2010/01/100129121823.htm
DOE/Lawrence Livermore National Laboratory. "National Ignition Facility achieves unprecedented 1 megajoule laser shot." ScienceDaily. www.sciencedaily.com/releases/2010/01/100129121823.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins