Featured Research

from universities, journals, and other organizations

First evidence that the brain’s native dendritic cells can muster an immune response

Date:
February 1, 2010
Source:
Rockefeller University
Summary:
The human brain is a delicate organ, robustly defended. A thick skull shields it from any direct exposure to the outside world, and the blood-brain barrier keeps out any foreign substances that are circulating within. New research shows that the brain may have its own specialized immune defenses, too.

Protecting the brain. New experiments show a special population of the immune system's sentinels, dendritic cells (green), at work in the brain. Brain dendritic cells gather around the border of stroke-damaged brain tissue and also stimulate T cells (red) to fight off infections.
Credit: Image courtesy of Rockefeller University

The human brain is a delicate organ, robustly defended. A thick skull shields it from any direct exposure to the outside world, and the blood-brain barrier keeps out any foreign substances that are circulating within. New research shows that the brain may have its own specialized immune defenses, too.

In 2008, researchers at Rockefeller University first identified a population of dendritic cells, the sentinels of the immune system, that was native to the brain. Now they have shown that these cells are not likely sleeping on the job. In experiments published recently in Proceedings of the National Academy of Sciences and Brain Behavior and Immunity, the researchers show that these brain dendritic cells can muster the immune system's soldier T cells when confronted by certain threats. They also show that, unlike dendritic cells from elsewhere in the body, brain dendritic cells line up along the periphery of stroke-damaged brain tissue, perhaps as a barricade protecting the healthy cells outside.

"We knew they were there and now we know they are immunologically functional," says Karen Bulloch, director of Rockefeller's Neuroimmunology and Inflammation Program, which was funded by the Peter Deane Trust following the initial discovery of brain dendritic cells. Bulloch is a research associate professor who works with Bruce S. McEwen's Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology and the Laboratory of Cellular Physiology and Immunology headed by Ralph M. Steinman, who discovered dendritic cells in 1973.

Dendritic cells capture and process foreign substances called antigens before presenting them to T cells, which multiply and attack the invaders. To test their activity in the brain, the researchers, led by Rockefeller graduate Andres Gottfried-Blackmore, now a student at Weill Cornell Medical College, injected a mouse brain with interferon-γ, an immune-response molecule produced during specific inflammatory responses. They found that the interferon increased the number of brain dendritic cells without recruiting dendritic cells from elsewhere in the immune system. They then exposed the dendritic cells to a model antigen called OVA, prompting a proliferation of OVA-specific T cells. The brain dendritic cells also proved far more effective at stimulating T cell proliferation in the same test than similar immune-related cells called microglia, which reside in the brain in huge numbers. The difference suggests a specialized role for brain dendritic cells.

In other experiments, led by postdoctoral fellow Jennifer Felger and in collaboration with the laboratory of Costatino Iadecola at Weill Cornell, researchers studied the response of brain dendritic cells labeled with a fluorescent protein after inducing strokes in mice. Unlike dendritic cells from elsewhere in the body, which were drawn into the stroke-damaged tissues, brain dendritic cells closed ranks around the perimeter of the damage, forming a barrier between stricken and healthy tissues.

Brain dendritic cells remain largely mysterious, but their immune-related activity suggests they play an important part in protecting the brain. The researchers are also interested in finding out what they do when they are not battling threats such as strokes or infections. "It is equally important to understand what they do when they are not defending the brain," Bulloch says.

Proceedings of the National Academy of Sciences 106, 20918-20923 (December 8, 2009) Acute in vivo exposure to interferon-γ enables resident brain dendritic cells to become effective antigen presenting cells Andres Gottfried-Blackmore, Ulrike W. Kaunzner, Juliana Idoyaga, Judit C. Felger, Bruce S. McEwen and Karen Bulloch Brain, Behavior and Immunity online: November 13, 2009 Brain dendritic cells in ischemic stroke: Time course, activation state, and origin Jennifer C. Felger, Takato Abe, Ulrike W. Kaunzner, Andres Gottfried-Blackmore, Judit Gal-Toth, Bruce S. McEwen, Costantino Iadecola and Karen Bulloch


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Cite This Page:

Rockefeller University. "First evidence that the brain’s native dendritic cells can muster an immune response." ScienceDaily. ScienceDaily, 1 February 2010. <www.sciencedaily.com/releases/2010/01/100131192110.htm>.
Rockefeller University. (2010, February 1). First evidence that the brain’s native dendritic cells can muster an immune response. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2010/01/100131192110.htm
Rockefeller University. "First evidence that the brain’s native dendritic cells can muster an immune response." ScienceDaily. www.sciencedaily.com/releases/2010/01/100131192110.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Obama: Ebola Outbreak Threat to Global Security

Obama: Ebola Outbreak Threat to Global Security

AP (Sep. 16, 2014) President Obama is ordering U.S. military personnel to West Africa to deal with the Ebola outbreak, which is he calls a potential threat to global security. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins