Featured Research

from universities, journals, and other organizations

Ability to navigate may be linked to genes

Date:
February 2, 2010
Source:
Johns Hopkins University
Summary:
New research for the first time links genes to our ability to orient ourselves to the world around us an then navigate through it.

Lost? Human adults, toddlers, rats, chicks and even fish routinely and automatically visualize the geometry of their surroundings and figure out where they are in space. Until now, however, we haven't understood that genes may play a part in that ability.
Credit: iStockphoto/Justin Horrocks

Imagine that you are emerging from the subway and heading for your destination when you realize that you are going in the wrong direction. For a moment, you feel disoriented, but a scan of landmarks and the layout of the surrounding streets quickly helps you pinpoint your location, and you make it to your appointment with time to spare.

Research tells us that human adults, toddlers, rats, chicks and even fish routinely and automatically accomplish this kind of "reorientation" by mentally visualizing the geometry of their surroundings and figuring out where they are in space. Until now, however, we haven't understood that genes may play a part in that ability.

Writing this week in the online Early Edition of the Proceedings of the National Academy of Sciences, a team led by Barbara Landau, the Dick and Lydia Todd Professor in the Department of Cognitive Science at The Johns Hopkins University, for the first time links genes to our ability to navigate the world.

"We found that people with a rare genetic disorder cannot use one of the very basic systems of navigation that is present in humans as early as 18 months and shared across a wide range of species," Landau said. "To our knowledge, this is the first evidence from human studies of a link between the missing genes and the system that we use to reorient ourselves in space."

Working with lead author Laura Lakusta of Montclair State University in New Jersey and co-author Banchiamlack Dessalegn, a postdoctoral fellow at University of Chicago (both of whom recently received their Ph.D.s at Johns Hopkins under Landau's direction and carried out the research there), Landau's study involved people with a rare genetic disorder known as Williams syndrome. Named for its discoverer, New Zealander Dr. J. C. P. Williams, the syndrome is caused when a small amount of genetic material is missing from one human chromosome. People with Williams syndrome are extremely social and verbally adept, but have difficulty with tasks such as assembling simple puzzles, copying basic patterns and navigating their bodies through the physical world. Williams syndrome occurs in one in 7,500 live births.

In the study, Landau's team challenged people with Williams syndrome to watch while someone hid an object beneath a small cloth flap in one corner of a small rectangular room with four solid black walls that had no landmarks. Subjects were then blindfolded and spun around (think "Pin the Tail on the Donkey") for about 10 seconds to disorient them. Once the blindfold was taken off, the subjects were asked to find the hidden object.

According to Landau, the people with Williams syndrome searched the four corners randomly; indicating that their ability to mentally visualize the layout of the room and quickly find which corner held the hidden object is severely impaired.

"They searched the room for the hidden object randomly, as if they had never before seen the overall geometry of the room or the lengths of the walls and their geometric -- left and right -- relation to each other," Landau explained. "If they could imagine the overall shape of the room's layout -- that there are four walls, two of them long and two of them short and that the toy was hidden in a corner that has a short wall on the right and the long wall on the left -- then they should have guessed that one of the two 'geometrically equivalent corners' was the right place. This is what typically developing humans do, as early as 18 months of age."

Control subjects (healthy college-aged students) responded more typically, searching for the object in one of the two geometrically equivalent corners, as has been found in studies by many other investigators.

According to Landau, the results of this study provides another clue to the link between how genes work, how brains develop and become specialized and what can go wrong to result in very basic cognitive system malfunctioning.

"Although we are quite far from understanding the links between the specific genes that are missing in Williams syndrome and the behavior they show, such as failure to reorient, it is clear that the missing genes ultimately have some effect on the brain," she said. "Our evidence is the first to directly show a substantial deficit in this reorientation system that is caused by missing genes in humans."


Story Source:

The above story is based on materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University. "Ability to navigate may be linked to genes." ScienceDaily. ScienceDaily, 2 February 2010. <www.sciencedaily.com/releases/2010/02/100201171920.htm>.
Johns Hopkins University. (2010, February 2). Ability to navigate may be linked to genes. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2010/02/100201171920.htm
Johns Hopkins University. "Ability to navigate may be linked to genes." ScienceDaily. www.sciencedaily.com/releases/2010/02/100201171920.htm (accessed August 20, 2014).

Share This




More Mind & Brain News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Do More Wedding Guests Make A Happier Marriage?

Do More Wedding Guests Make A Happier Marriage?

Newsy (Aug. 20, 2014) — A new study found couples who had at least 150 guests at their weddings were more likely to report being happy in their marriages. Video provided by Newsy
Powered by NewsLook.com
Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) — Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Newsy (Aug. 19, 2014) — A study by King's College London says there's a link between how well kids draw at age 4 and how intelligent they are later in life. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins