Featured Research

from universities, journals, and other organizations

New method for measuring fluid flow in algae could herald revolution for fluid mechanics

Date:
February 9, 2010
Source:
Cambridge University Press
Summary:
Researchers in fluid dynamics have studied algae to illuminate fluid mechanics. One of the researchers said, "Nature has long inspired researchers in fluid mechanics to explore the mechanical strategies used by living creatures. Where better to look for innovative solutions to a technological challenge than to organisms that have had millions of years to devise strategies for related challenges?"

In the words of Todd Squires, of the University of California, Santa Barbara "Nature has long inspired researchers in fluid mechanics to explore the mechanical strategies used by living creatures. Where better to look for innovative solutions to a technological challenge than to organisms that have had millions of years to devise strategies for related challenges?"

Now two research groups from the University of Cambridge, led by Professor Ray Goldstein of the Department of Applied Mathematics and Theoretical Physics, and Professor Lynn Gladden of the Department of Chemical Engineering and Biotechnology, have done just that. Their findings are published in volume 642 of Journal of Fluid Mechanics, published by Cambridge University Press.

They have studied the giant cells of the Characean algae -- cells that can measure up to 10cm in length and 1mm in diameter. This exceptional size makes the standard methods of distributing material within cells impossible, so Characean algae have long been known to employ 'conveyor belts' along their cellular walls to move food and waste around. It is the spatial distribution of the velocity of this movement that has been measured for the first time using state-of-the art magnetic resonance imaging techniques.

The impact of their discoveries and research techniques will be far-reaching. Professor Squires comments: "[The methods used] are incredibly powerful and have the potential to revolutionise our understanding of a wide range of environmentally and industrially relevant fluid flows. The technique is completely non-invasive, requires no flow tracers and can be performed in non-transparent materials."

Looking to the future, Professor Squires stated that this study 'should serve as a potent reminder that the immense variety of organisms on Earth contains a wealth of expertise that may be mined for biomimetic [i.e. nature-imitating] solutions.'


Story Source:

The above story is based on materials provided by Cambridge University Press. Note: Materials may be edited for content and length.


Journal References:

  1. Van De Meent et al. Measurement of cytoplasmic streaming in single plant cells by magnetic resonance velocimetry. Journal of Fluid Mechanics, 2010; 6425 DOI: 10.1017/S0022112009992187
  2. Squires et al. A furtive stare at an intra-cellular flow. Journal of Fluid Mechanics, 2010; 6421 DOI: 10.1017/S0022112009992990

Cite This Page:

Cambridge University Press. "New method for measuring fluid flow in algae could herald revolution for fluid mechanics." ScienceDaily. ScienceDaily, 9 February 2010. <www.sciencedaily.com/releases/2010/02/100208144852.htm>.
Cambridge University Press. (2010, February 9). New method for measuring fluid flow in algae could herald revolution for fluid mechanics. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2010/02/100208144852.htm
Cambridge University Press. "New method for measuring fluid flow in algae could herald revolution for fluid mechanics." ScienceDaily. www.sciencedaily.com/releases/2010/02/100208144852.htm (accessed September 19, 2014).

Share This



More Matter & Energy News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Newsy (Sep. 18, 2014) Apple's new operating system, iOS 8, comes with Apple's killswitch feature already activated, unlike all the models before it. Video provided by Newsy
Powered by NewsLook.com
Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins