Featured Research

from universities, journals, and other organizations

Locust study promises new insights into limb control

Date:
February 9, 2010
Source:
University of Leicester
Summary:
New research into how the brain controls the movements of limbs could prompt major advances in understanding the human brain and the development of prosthetic limbs.

New research at the University of Leicester into how the brain controls the movements of limbs could prompt major advances in understanding the human brain and the development of prosthetic limbs.

Related Articles


Dr Tom Matheson, a Reader in Neurobiology, and Professor Rodrigo Quian Quiroga, a Professor of Bioengineering, have joined their areas of expertise together to begin this innovative research. They were recently awarded over £800,000 from the Biotechnology and Biological Sciences Research Council (BBSRC) to carry out the analysis of the sensory-motor control of limb movements.

The study will involve recording, analysing and manipulating the activity of individual nerve cells in locusts whilst they make aimed limb movements. This research will help to uncover the general principles of organisation that underpin all limb movements. At the same time the research will develop new methods that can be applied to the analysis of human brain signals.

Accidents and medical disorders that impair or prevent controlled limb movements have profound effects on the quality of life of the patients affected. Through this study, Dr Matheson and Professor Quian Quiroga seek to understand how the brain controls limb movements so that it is possible to better understand what goes wrong in disease processes, and to develop better medical interventions such as prosthetic limbs that are controlled by the activity of the patient's brain.

Dr Matheson commented: "We are very excited to have been given the opportunity by the BBSRC to set up and develop these new techniques. It is a great opportunity to combine the two areas of expertise of our labs in Biology and Engineering to address some very difficult but very interesting questions."

With this research, Professor Quian Quiroga builds on his previous work of isolating the activity of single nerve cells from an overall response.

Professor Quian Quiroga commented: "This grant from the BBSRC gives us the unique opportunity to study the activity of large population of neurons in a system that has been very well studied by my colleague, Dr Tom Matheson. On the one hand, it will give us the chance to further develop methodologies to study large neural populations, and on the other hand, our research will likely contribute to our knowledge of aimed movements in a system that is relatively simple compared to other animals and humans. This knowledge may contribute to the development of neural prostheses to be used by paralyzed patients, which is clearly an area of major significance."


Story Source:

The above story is based on materials provided by University of Leicester. Note: Materials may be edited for content and length.


Cite This Page:

University of Leicester. "Locust study promises new insights into limb control." ScienceDaily. ScienceDaily, 9 February 2010. <www.sciencedaily.com/releases/2010/02/100209124503.htm>.
University of Leicester. (2010, February 9). Locust study promises new insights into limb control. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2010/02/100209124503.htm
University of Leicester. "Locust study promises new insights into limb control." ScienceDaily. www.sciencedaily.com/releases/2010/02/100209124503.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins