Featured Research

from universities, journals, and other organizations

Modified adult stem cells may be helpful in spinal cord injury

Date:
February 24, 2010
Source:
University of Texas Health Science Center at Houston
Summary:
Researchers have demonstrated in rats that transplanting genetically modified adult stem cells into an injured spinal cord can help restore the electrical pathways associated with movement.

Researchers at UTHealth have demonstrated in rats that transplanting genetically modified adult stem cells into an injured spinal cord can help restore the electrical pathways associated with movement. The results are published in the Feb. 24 issue of the Journal of Neuroscience.

Related Articles


In spinal cord injury, demyelination, or the destruction of the myelin sheath in the central nervous system, occurs. The myelin sheath, produced by cells called oligodendrocytes, wraps around the axons of nerves and helps speed activity and insulate electrical conduction. Without it, the nerves cannot send messages to make muscles move.

The research team, led by Qilin Cao, M.D., principal investigator and associate professor of neurosurgery at UTHealth (The University of Texas Health Science Center at Houston), discovered that transplanted adult stem cells (oligodendrocyte precursor cells or OPC) from the spinal cord could become oligodendrocytes. The new cells helped restore electrical pathways of the spinal cord and therefore, function, in a process called remyelination.

Cao said two important discoveries were isolating precursor cells from the adult spinal cord and, prior to transplanting them into the spinal cord, genetically modifying them to express ciliary neurotrophic factor (CNTF), a protein that encourages nerve growth. In preliminary experiments, also published in this paper, CNTF was shown to facilitate survival and differentiation of OPCs in cell culture.

"Most importantly, the evidence of remyelination was shown to exactly coincide with the anatomical localization of these motor pathways in spinal cord white matter," Cao said. "These latter data provide confidence that the mechanism by which the grafted OPCs are enhancing functional recovery is through remyelination."

Previous studies by the team and other researchers have shown that grafted OPCs survive after grafting into an injured spinal cord and increase movement recovery, but the mechanical connection to remyelination had only been theorized. In this research, results showed that there was significantly enhanced behavioral recovery, return of electrophysiological conduction and ultra-structural evidence of remyelination.

The clinical significance is two-fold, Cao said: "First it confirms what has been suggested by these and other authors that stem cell grafting in attempts to remyelinate an injured spinal cord is a viable therapeutic strategy. Secondly, it strongly cautions that optimal recovery using such an approach will require more than simply grafting naοve precursor cells."

Funding for the research was supported by the National Institute for Neurological Diseases and Stroke, the National Center for Research Resources, TIRR Foundation's Mission Connect.

Co-investigators of the study were Dong H. Kim, M.D., chairman and professor in the Department of Neurosurgery at UTHealth's Medical School and director of the Mischer Neuroscience Institute at Memorial Hermann-Texas Medical Center; and Scott R. Whittemore, Ph.D, professor of neurological surgery at the University of Louisville and director of Kentucky Spinal Cord Injury Research Center.


Story Source:

The above story is based on materials provided by University of Texas Health Science Center at Houston. Note: Materials may be edited for content and length.


Journal Reference:

  1. Cao et al. Transplantation of Ciliary Neurotrophic Factor-Expressing Adult Oligodendrocyte Precursor Cells Promotes Remyelination and Functional Recovery after Spinal Cord Injury. Journal of Neuroscience, 2010 30: 2989-3001 DOI: 10.1523/JNEUROSCI.3174-09.2010

Cite This Page:

University of Texas Health Science Center at Houston. "Modified adult stem cells may be helpful in spinal cord injury." ScienceDaily. ScienceDaily, 24 February 2010. <www.sciencedaily.com/releases/2010/02/100224103400.htm>.
University of Texas Health Science Center at Houston. (2010, February 24). Modified adult stem cells may be helpful in spinal cord injury. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2010/02/100224103400.htm
University of Texas Health Science Center at Houston. "Modified adult stem cells may be helpful in spinal cord injury." ScienceDaily. www.sciencedaily.com/releases/2010/02/100224103400.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Mistakes Should Serve a Lesson Says WHO

Ebola Mistakes Should Serve a Lesson Says WHO

AFP (Jan. 25, 2015) — The World Health Organization&apos;s chief on Sunday admitted the UN agency had been caught napping on Ebola, saying it should serve a lesson to avoid similar mistakes in future. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Disneyland Measles Outbreak Spreads To 5 States

Disneyland Measles Outbreak Spreads To 5 States

Newsy (Jan. 24, 2015) — Much of the Disneyland measles outbreak is being blamed on the anti-vaccination movement. The CDC encourages just about everyone get immunized. Video provided by Newsy
Powered by NewsLook.com
Growing Measles Outbreak Worries Calif. Parents

Growing Measles Outbreak Worries Calif. Parents

AP (Jan. 23, 2015) — Public health officials are rushing to contain a measles outbreak that has sickened 70 people across 6 states and Mexico. The AP&apos;s Raquel Maria Dillon has more. (Jan. 23) Video provided by AP
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) — A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins