Featured Research

from universities, journals, and other organizations

New cancer-fighting strategy focuses on signaling molecules

Date:
February 26, 2010
Source:
University of California - San Francisco
Summary:
Cancer researchers studying the immune system have identified a previously unrecognized set of targets and biomarkers to battle solid tumors.

Cancer researchers studying the immune system have identified a previously unrecognized set of targets and biomarkers to battle solid tumors.

Related Articles


The findings center on discovery of signaling molecules that are major players in a biochemical mechanism linking certain actions of B cells to solid tumor growth. The most notable implication of the study is that a drug in use for more than decade to treat non-Hodgkin's lymphoma, which is a cancer of the B cells, might be effective against other solid tumors, says lead author Lisa Coussens, PhD, of the UCSF Helen Diller Family Comprehensive Cancer Center.

"This is paradigm shifting," emphasizes Coussens, who is a pioneer in studying the role of molecular regulation in cellular inflammation that is linked to development of cancer. "The discoveries open up our thinking to many new signaling molecules as potential therapeutic targets.''

The research is published online and in print by the scientific journal Cancer Cell.

"These are very significant findings because they suggest that Rituxan, a drug that we already are familiar with, could have very broad clinical implications in the treatment of some solid tumors,'' says Coussens, who also is a professor in the UCSF Department of Pathology and co-director of the Mouse Pathology Core and Program in Cancer, Immunity and Microenvironment.

The researchers found that a class of antibodies known as immunoglobulin G and the receptors to which they bind play a key role in the link between B cells and solid tumor growth. Called FcRgamma, these receptors are found on cells of the innate immune system (including mast cells, macrophages, and dendritic cells). The activation of FcRgamma plays a part in recruiting circulating immune cells to neoplastic (abnormal) tissue, which in turn enhances development of new blood vessels to feed nutrients to growing tumors and to advance progression to malignant cancer.

Most tumors are rife with activated immune cells, says Coussens, but their role in the development of cancer has been largely overlooked.

The findings may lead to more successful treatment of certain solid tumors by combining chemotherapy with drugs that can thwart cancer-promoting activities of the immune system, according to Coussens. For instance, the drug Rituxan has relatively few side effects, she adds.

As a result of the molecular discovery, Coussens is collaborating with pharmaceutical industry experts to explore new therapeutic strategies. Preclinical testing of the combination approach is underway involving therapies similar to Rituxan and chemotherapy, and initial results "look promising,'' says Coussens.

At UCSF, the Coussens lab focuses on the role of inflammatory cells and leukocyte proteases as critical regulators of skin, lung and breast cancer development. During the early development of cancer, many physiological processes occur in the vicinity of young tumor cells that are similar to processes that occur during embryonic development and to healing of wounds in adult tissue.

By studying mouse models of skin, lung and breast cancer development, the Coussens lab is identifying important molecules involved in regulating tumor-associated inflammation, angiogenesis, and cancer development. Identification of these important regulatory mechanisms reveals drug-targets that can then be used to design novel therapeutic strategies for treating cancer development in humans.

Biochemical and cellular studies during the past decade have shown that inflammation can promote the development of cancer. In addition, certain chronic inflammatory conditions, such as Crohn's disease, pancreatitis, prostatitis, asbestosis and Barrett's esophagus, are associated with an elevated cancer risk.

Discoveries over the last decade have made clear that "Chronic inflammation in the context of tumor development is associated with a poor prognosis,'' says Coussens.

Other study authors include Pauline Andreu, PhD; Magnus Johansson, PhD; Nesrine I. Affara, PhD, and David DeNardo, PhD, postdoctoral scholars in the Coussens laboratory and in the Department of Pathology.


Story Source:

The above story is based on materials provided by University of California - San Francisco. The original article was written by Jeffrey Norris. Note: Materials may be edited for content and length.


Journal Reference:

  1. Pauline Andreu, Magnus Johansson, Nesrine I. Affara, Ferdinando Pucci, Tingting Tan, Simon Junankar, Lidiya Korets, Julia Lam, David Tawfik, David G. DeNardo, Luigi Naldini, Karin E. de Visser, Michele De Palma, Lisa M. Coussens. FcRγ Activation Regulates Inflammation-Associated Squamous Carcinogenesis. Cancer Cell, 2010; 17 (2): 121 DOI: 10.1016/j.ccr.2009.12.019

Cite This Page:

University of California - San Francisco. "New cancer-fighting strategy focuses on signaling molecules." ScienceDaily. ScienceDaily, 26 February 2010. <www.sciencedaily.com/releases/2010/02/100224183117.htm>.
University of California - San Francisco. (2010, February 26). New cancer-fighting strategy focuses on signaling molecules. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2010/02/100224183117.htm
University of California - San Francisco. "New cancer-fighting strategy focuses on signaling molecules." ScienceDaily. www.sciencedaily.com/releases/2010/02/100224183117.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins