New! Sign up for our free email newsletter.
Science News
from research organizations

First T2K neutrino event observed at Super-Kamiokande

Date:
February 26, 2010
Source:
Stony Brook University
Summary:
Physicists have made the first detection of a neutrino which had traveled all the way under Japan from their neutrino beamline at the J-PARC facility in Tokai village (about an hour north of Tokyo by train) to the gigantic Super-Kamiokande underground detector near the west coast of Japan, 295 km (185 miles) away from Tokai.
Share:
FULL STORY

Physicists from the Japanese-led multinational T2K collaboration announced February 24 that they had made the first detection of a neutrino which had travelled all the way under Japan from their neutrino beamline at the J-PARC facility in Tokai village (about an hour north of Tokyo by train) to the gigantic Super-Kamiokande underground detector near the west coast of Japan, 295 km (185 miles) away from Tokai. Stony Brook University has been the leading US institution in the T2K experiment.

"It is a big step forward," said T2K spokesperson Takashi Kobayashi. "We've been working hard for more than 10 years to make this happen."

They have constructed their new neutrino beamline, which will deliver the world's most powerful neutrino beams, to study the mysterious phenomenon known as neutrino oscillations, and the observation of this event proves that their study can now begin.

"Neutrinos are the elusive ghosts of particle physics," Kobayashi explains. "They come in three types, called electron neutrinos, muon neutrinos, and tau neutrinos, which used to be thought to be immutable."

Interacting only weakly with matter, neutrinos can traverse the entire earth with vastly less attenuation than light passing through a window. The very weakness of their interactions allows physicists to make what should be very accurate predictions of their behavior, and thus it came as a shock when measurements of the flux of neutrinos coming from the thermonuclear reactions which power our sun were far lower than predicted."

A second anomaly was then demonstrated by Super-Kamiokande, when it showed that the flux of different types of neutrino generated within our atmosphere by cosmic ray interactions was different depending on whether the neutrinos were coming from above or below (which should not have been possible given our understanding of particle physics). Other experiments, such as KamLAND (also performed at Kamioka), have conclusively demonstrated that these anomalies are caused by neutrino oscillations, whereby one type of neutrino turns into another.

"Congratulations from CERN on the first T2K neutrino event seen at Super-Kamiokande," said CERN Director General Rolf Heuer. "Switching on the world's first neutrino superbeam is a great achievement, and is set to bring great advances in the understanding of this most elusive of particles. Even in a time of financial difficulty around the globe, it's important not to lose sight of the fact that basic science is and always will be a crucial element of progress. It is therefore heartening to see such an important new basic science initiative getting underway now."

The T2K experiment has been built to make measurements of unprecedented precision of known neutrino oscillations, and to look for a so-far unobserved type of oscillation which would cause a small fraction of the muon neutrinos produced at J-PARC to become electron neutrinos by the time they reach Super-Kamiokande.

"This first neutrino event marks a great achievement for T2K and a milestone for the fast-growing field of neutrino physics worldwide," said Fermilab Director Pier Oddone.

Observing the new type of oscillation would open the prospect of comparing the oscillations of neutrinos and anti-neutrinos, which many theorists believe may be related to one of the great mysteries in fundamental physics -- why is there more matter than anti-matter in the universe? The observation of this first neutrino means that the hunt has just begun.

Background:

The T2K collaboration consists of 508 physicists from 62 institutes in 12 countries (Japan, South Korea, Canada, the United States, the United Kingdom, France, Spain, Italy, Switzerland, Germany, Poland, and Russia). The experiment consists of a new neutrino beamline using the recently constructed 30 GeV synchrotron at the J-PARC laboratory in Tokai, Japan, a set of near detectors constructed 280m from the neutrino production target, and the Super-Kamiokande detector in western Japan.

The U.S. participation in the T2K experiment is supported by the U.S. Department of energy. It consists of 80 physicists from 11 institutions: (Boston University, Brookhaven National Laboratory, University of California, Irvine, University of Colorado, Boulder, Colorado State University, Duke University, Louisiana State University, University of Pittsburgh, University of Rochester, Stony Brook University, and University of Washington).


Story Source:

Materials provided by Stony Brook University. Note: Content may be edited for style and length.


Cite This Page:

Stony Brook University. "First T2K neutrino event observed at Super-Kamiokande." ScienceDaily. ScienceDaily, 26 February 2010. <www.sciencedaily.com/releases/2010/02/100226213730.htm>.
Stony Brook University. (2010, February 26). First T2K neutrino event observed at Super-Kamiokande. ScienceDaily. Retrieved April 18, 2024 from www.sciencedaily.com/releases/2010/02/100226213730.htm
Stony Brook University. "First T2K neutrino event observed at Super-Kamiokande." ScienceDaily. www.sciencedaily.com/releases/2010/02/100226213730.htm (accessed April 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES